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Solutions to numerous societal and academic problems 

       rely on increasingly detailed 

  images of the Earth‘s interior sturcture: 

 

 

1) Monitoring of the CNTBT 

2) Reliable tsunami warnings (see end of this talk) 

3) Prediction of strong seismic ground motion 

4) Exploration for natural resources 

5) Nature of plumes in the deep mantle (see poster by Florian Rickers) 

6) Composition and dynamics of the solid Earth 



Information on the structure of the Earth is limited by 

 the uneven distribution of receivers: 

seismic station coverage 

North America 

• oceans 

• mountain ranges 

• deserts including Antarctica 

• politics and financial resources 



Information on the structure of the Earth is limited by 

 the uneven distribution of sources: 

• earthquakes in a few tectonically active areas (passive imaging) 

• financial resources (active imaging) 

• environmental issues (active imaging) 



Information on the structure of the Earth is limited by 

 the physics of seismic wave propagation: 

• attenuation prevents propagation of high-frequency waves 

• irregular sampling due to the presence heterogeneity 

illuminated not illuminated 

Lecomte et al., 2009 

Underside of the salt body 

is not illuminated due to 

heterogeneity. 



Want learn as much as possible about the Earth‘s properties? 

Exploit as much waveform information as possible! 



1. Solution of the forward problem  

 Computation of accurate synthetic seismograms for heterogeneous Earth models 

 Numerical methods to solve the seismic wave equation 

2. Quantification of waveform misfit  

 Exploit as much information as possible while conforming to the physics of the problem 

3. Misfit minimisation: Gradient methods 

 Iterative reduction of the misfit using gradient methods 

 Convergence: initial model and multi-scale approach 

4. Efficient computation of the gradient: The adjoint method 

 Adjoint wave field and time reversal 

 Sensitivity kernels 

 

 

STEPS TO BE TAKEN 



1. Solution of the forward problem  

 Computation of accurate synthetic seismograms for heterogeneous Earth models 

 Numerical methods to solve the seismic wave equation 

2. Quantification of waveform misfit  

 Exploit as much information as possible while conforming to the physics of the problem 

3. Misfit minimisation: Gradient methods 

 Iterative reduction of the misfit using gradient methods 

 Convergence: initial model and multi-scale approach 

4. Efficient computation of the gradient: The adjoint method 

 Adjoint wave field and time reversal 

 Sensitivity kernels 

5. Applications 

6. Challenges and directions of future research 

 

OUTLINE 



1. Forward Problem Solution 



Forward problem: The seismic wave equation 
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wave field @ 100 km depth 
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Bleibinhaus et al. (2007) 

No exact solutions exist for heterogeneous media! 

Crust2.0 



Forward problem: The seismic wave equation 
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elastic displacement field, u 

density        elastic tensor           force density 

Find numerical solutions  

that allow for  

nearly arbitrary heterogeneities. 

No exact solutions exist for heterogeneous media! 



 

• replace derivatives by finite-difference approximations 

 finite-difference method  

• approximate u(x,t) by polynomials 

 discontinuous Galerkin method,  spectral-element method 

• approximate derivatives in the wave number domain 

pseudo-spectral methods 

• … 
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Forward problem: Discretisation of spatial derivatives 
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spatial discretisation 

semi-discrete wave equation: 

mass matrix stiffness matrix 

discrete approximation of the displacement field 

• wave field sampled at a finite number of grid points (finite-difference method) 

• polynomial coefficients (spectral-element & discontinuous Galerkin methods) 

Forward problem: Discretisation of spatial derivatives 



semi-discrete wave equation: 

solution either in 

the time domain                             or                    the frequency domain 

Forward problem: Discretisation of spatial derivatives 

easy to invert (diagonal) 

• discretise the time derivative 

• iteratively advance from t  to  t+∆t : 

• time-domain waveform inversion 

• preferred in large-scale 3D applications 

u(t) → u(t+∆t) 
_          _ 

• define impedance matrix: 

• frequency-domain waveform inversion 

• efficient for many different sources  

• preferred strategy in 2D 

• solve the linear system: 

• no need to invert K 

see the talks by Jean Virieux 



Forward problem: Examples 

T. Nissen-Meyer M. Käser 

FD 

SEM 

ADER-DG 



2. Quantification of waveform misfit 



Misfit quantification: The L2 norm 

data, u0(t) 

synthetic, u(t) 



Misfit quantification: The L2 norm 

data, u0(t) 

synthetic, u(t) 

u(t)-u0(t) 

  
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0 dt(t)uu(t)χL2 waveform misfit: 



Misfit quantification: The L2 norm 

data, u0(t) 

synthetic, u(t) 

  
t

2

0 dt(t)uu(t)χL2 waveform misfit: 

advantages 

• easy and fast to implement 

• uses the complete waveform 

disadvantages 

• not robust 

• very nonlinearly related to long- 

  wavelength structure 

• over-emphasises large-amplitde waves 



Misfit quantification: The L2 norm 

data, u0(t) 

synthetic, u(t) 

  
t

2

0 dt(t)uu(t)χL2 waveform misfit: 

advantages 

• easy and fast to implement 

• uses the complete waveform 

disadvantages 

• not robust 

• very nonlinearly related to long- 

  wavelength structure 

• over-emphasises large-amplitde waves 

Not well suited for realistic applications! 

Time-like measures of waveform misfit. 



Misfit quantification: Cross-correlation time shifts 

1. select and isolate a waveform 

Luo & Schuster, 1991 

Used before in surface wave analysis. 



Misfit quantification: Cross-correlation time shifts 

1. select and isolate a waveform 



Misfit quantification: Cross-correlation time shifts 

2. compute correlation function 

 
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1. select and isolate a waveform 



Misfit quantification: Cross-correlation time shifts 

1. select and isolate a waveform 

2. compute correlation function 

ΔT = cross-correlation time shift 

2Tχ 



Misfit quantification: Cross-correlation time shifts 

Refinement of the cross-correlation technique: 

 measurments in multiple frequency bands 

Extract more information about the structure of the Earth. 

ask Karin Sigloch and Guust Nolet for more details. 



Misfit quantification: Time-frequency misfits 

Time-frequency misfits 

phase differences as functions of time and frequency 

 

 

 

inspired by Kristekova et al., BSSA 2006 



Time-frequency misfits 

phase differences as functions of time and frequency 

 

 

• quasi-linearly related to Earth structure 

 improves convergence  

• independent of amplitudes 

 reliably measurable, deep structure information 

• applicable to complex waveforms 

 interfering waves, unidentifyable waves 

• continuous in frequency 

no discrete frequency bands 

 

Misfit quantification: Time-frequency misfits 

Fichtner et al., GJI 2008 



Misfit quantification 

The design of suitable misfit measures a major challenge ! 

Instantaneous phase: Bozdag & Trampert, GJI (2010), F. Rickers‘ poster 

 

 

Robust measures: Crase et al., Geophysics (1990), Brossier et al., GRL (2009)  



3. Misfit minimisation 



Misfit minimisation: Gradient methods 

1. Start from initial Earth model  

2. Update according to 

step length descent direction 



Misfit minimisation: Gradient methods 

1. Start from initial Earth model  

2. Update according to 

step length descent direction 
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The family of gradient methods: 

• method of steepst descent: 

• conjugate-gradient methods 

• Newton and Newton-like methods 

• variable-metric methods 

• … 

m/hi  



Misfit minimisation: Gradient methods 

1. Start from initial Earth model  

2. Update according to 

step length descent direction 

00h

m0 m1 

 



Misfit minimisation: Gradient methods 

1. Start from initial Earth model  

2. Update according to 

step length descent direction 

m0 m1 

 

m2 m3 m4 … 

Iteratively approach the 

minimum misfit by following the 

local descent directions. 



1. Start from initial Earth model  

2. Update according to 

step length descent direction 

m0 m1 

 

m2 m3 m4 … 

Misfit minimisation: Importance of the initial model 
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Misfit minimisation: Importance of the initial model 



Misfit minimisation: Importance of the initial model 

• Gradient methods are local. 

• Convergence to the global minimum relies on a good initial model. 

• Good initial model: e.g. long-wavelength model from ray tomography. 

Bleibinhaus et al., 2007 



• Gradient methods are local. 

• Convergence to the global minimum relies on a good initial model. 

• Good initial model: e.g. long-wavelength model from ray tomography. 
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Bleibinhaus et al., 2007 

Misfit minimisation: Importance of the initial model 



Misfit minimisation: Multi-scale approach 

• Sufficiently good initial models are often not available. 

• The multi-scale approach is an empirical strategy that  

   helps to overcome this problem 



Misfit minimisation: Multi-scale approach 

long-period data 

 

 → long-wavelength structure 



Misfit minimisation: Multi-scale approach 

shorter-period data 

 

 → shorter-wavelength structure 



Misfit minimisation: Multi-scale approach 

short-period data 

 

 → short-wavelength structure 



Misfit minimisation: Multi-scale approach 

Bleibinhaus et al., 2007 



4. Efficient computation of the gradient: The adjoint method 



Gradient-based methods 

rely on the gradient of the misfit functional (m)  

with respect to the model parameters mi : 

How can we compute this quantity most efficiently? 

The adjoint method: Problem statement 
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The adjoint method: Adjoint method recipe 

Tape et al., 2007 

1. Solve the forward problem 

t1                                     t2                         t3                         t4 

forward field u 

synthetic seismograms 



The adjoint method: Adjoint method recipe 

1. Solve the forward problem 

t1                                     t2                         t3                         t4 

2. Evaluate the misfit  

 
3. Solve the adjoint problem  

• also a wave equation 

• runs backwards in time away from the receiver 

• source determined by the misfit  

Tape et al., 2007 

t1                                     t2                         t3                         t4 

adjoint field ut 

forward field u 

synthetic seismograms 
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4. Compute the gradient by correlating u and ut 

forward field u 

synthetic seismograms 



The adjoint method: Adjoint method recipe 

1. Solve the forward problem 

t1                                     t2                         t3                         t4 

2. Evaluate the misfit  

 
3. Solve the adjoint problem  

• also a wave equation 

• runs backwards in time away from the receiver 

• source determined by the misfit  

Tape et al., 2007 
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4. Compute the gradient by correlating u and ut 

Fréchet kernel 

sensitivity kernel 

sensitivity density 

forward field u 

synthetic seismograms 



The adjoint method: Fréchet kernel gallery 

measurement: cross-correlation time shift 



The adjoint method: Fréchet kernel gallery 



The adjoint method: Fréchet kernel gallery 

red: Δvp>0 

synthetics appear earlier 

time shift smaller 

blue: Δvp>0 

synthetics appear later 

time shift larger 

data 

synthetic 



The adjoint method: Fréchet kernel gallery 



The adjoint method: Fréchet kernel gallery 



5. Applications 



Applications: Continental scale 

ray coverage 

• 60 earthquakes in the Australasian region 

• data 

    fundamental- and higher-mode surface waves  

    long-period body waves 

    unidentified phases  

• periods between 30 s and 200 s 

• spectral-element simulations 

• measurements of time-frequency phase misfit 

• 19 conjugate-gradient iterations 



Applications: Continental scale 

isotropic S wave speed 

Fichtner, Kennett, Igel, Bunge: EPSL 2010 



radial anisotropy (Vsh-Vsv)/Vs
iso 

Applications: Continental scale 

Fichtner, Kennett, Igel, Bunge: EPSL 2010 



Applications: Continental scale 

• Superimposed:   

3He/4He ratios from arc volcanics  

[Hilton & Craig, 1989, Hilton et al., 1992] 

 

• Observation at 200 km depth:  

low   to  high velocities  

high  to   low  He ratios 

 

 

Old continental lithosphere 

is subduced to more than 

200 km depth !!! 

Fichtner, de Wit, van Bergen: EPSL 2010 



data initial model final model 
T = 30 s 

Applications: Continental scale 



Applications: Continental scale 

• accurate determination of seismic source characteristics * 

• long-term goal: improved tsunami warning 

* Hingee, Tkalcic, Fichtner, Sambride: GJI 2010 



6. Challenges and directions of future research 



1. Quantification of resolution 

Challenges and directions of future research 
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























...............

...............

...............

...............

...............

H

Hessian of the misfit functional: 

• Physics:  

second-order scattering 

 

• Inversion:  

covariance information 



1. Quantification of resolution 

Challenges and directions of future research 
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1. Quantification of resolution 

 

2. Multi-parameter inversions 

• Q 

• anistropy 

• density 

  

3. More efficient optimisation schemes 

 

4. Design of misfit functionals that extract target-oriented information 

 

5. Combination of full waveform inversion with noise tomography 

 

6. … 

 

Challenges and directions of future research 



Numerical solution of the elastic wave equation 
• Finite-difference methods 

• Spectral-element methods 

• Absorbing boundaries 

• Visco-elastic dissipation 

 

Iterative solution of the inverse problem 
• Introduction to iterative nonlinear minimisation  

• The continuous adjoint method 

• First and second derivatives 

• The discrete adjoint method 

• Misfit functionals and adjoint sources 

• Fréchet and Hessian kernel gallery 

 

Applications 
• Full waveform tomography on continental scales 

• Application of full waveform tomography to active-

source surface-seismic data [by F. Bleibinhaus] 

• Source stacking data reduction for full waveform 

tomography at the global scale [by Y. Capdeville] 

Much of this can soon be found in:  



Thank you for your attention! 


