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Acoustic and elastic wave equations
Governing Equations in velocity-strain form

∂E

∂t
=

1
2
(
∇v +∇vT

)
in B

ρ
∂v

∂t
= ∇ · (λ tr(E)I + 2µE) + ρf in B

Sn = tbc(t) on ∂B

v = v0(x) at t = 0
E = E0(x) at t = 0

I E — strain tensor

I S — stress tensor

I ρ — mass density

I v — displacement velocity

I f — body force per unit mass

I λ and µ — Lamé parameters

I I — identity tensor

I tbc — traction bc

I v0,E0 — initial conditions

I t — time

I x — point in the body

I B — solution body
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Acoustic and elastic wave equations
Elastic-Elastic and Elastic-Acoustic Interface conditions

Solid-solid interface Γss:

v+ = v− on Γss

S+n = S−n on Γss

n
λ+, µ+, ρ+

λ−, µ−, ρ−

Γss

Fluid-solid interface Γfs: (also
valid for fluid-fluid)

n · v+ = n · v− on Γfs

S+n = S−n on Γfs

n
λ+, µ+, ρ+

λ−, µ−, ρ−

Γfs
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Discontinuous Galerkin

I Solutions are piecewise smooth and likely discontinuous
between elements—weak enforcement of continuity between
elements and boundary conditions through numerical flux

I Straight-forward implementation of variable order, variable
size elements, and parallelization

u

x

x

u

u

x

x

u

h-refinement p-refinement

I First-order DG formulation allows for straightforward coupling
of acoustic and elastic regions through numerical flux

I Build on scalable parallel 3D-mesh generator, support for
parallel adaptive mesh refinement
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Discontinuous Galerkin discretization
General Form

The DG discretization of the elastic-acoustic wave equations is
given by: Find (E,v) ∈ V such that for all elements De:∫

De

∂E

∂t
: CH dx +

∫
De

ρ−
∂v

∂t
·w dx−

∫
De

1
2
(
∇v +∇vT

)
: CH dx

−
∫

De

(∇ · (CE)) ·w dx +
∫

∂De

Fv : CH + FE ·w dx

for all test functions (H,w),where Fv and FE are the numerical
fluxes.

⇒ Compute the numerical flux by solving the Riemann problem with
discontinuous material parameters
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Numerical flux computation
Elastic-elastic interface

n

t

−c−p −c−s 0 c+s c+p

q− q+

qa
qdqb qc

λ−, µ−, ρ− λ+, µ+, ρ+

Solve the acoustic-elastic wave equation for a given piecewise
constant material with the initial condition

q0(x) =
{

q− if n · x < 0,
q+ if n · x > 0.

The upwind numerical flux along n is defined as flux in this
Riemann problem across the n · x = 0 interface.
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Discontinuous Galerkin discretization
Upwind Numerical Flux (unified form)

Fv = k0

(
n · [[CE]] + ρ+c+p [[v]]

)
n⊗ n

− k1 sym (n⊗ (n× (n× [[CE]]))
− k1ρ

+c+s sym (n⊗ (n× (n× [[v]])) ,

FE = k0

(
n · [[CE]] + ρ+c+p [[v]]

)
ρ−c−p n

− k1ρ
−c−s n× (n× [[CE]])

− k1ρ
+c+s ρ

−c−s n× (n× [[v]]).

Here, n is the unit outward normal and k0 and k1 are given by

k0 =
1

ρ−c−p + ρ+c+p
, k1 =

1
ρ−c−s + ρ+c+s

.

Note that numerical flux involves local wave speeds from both sides
of element interfaces. In the liquid, we simply set cs = k1 = 0.
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Discontinuous spectral element implementation

0

3

1

4

2

I Allows h-nonconforming hexahedral elements (2:1 balance)
I The element basis is the tensor product of Lagrange

polynomials based on the Legendre-Gauss-Lobatto (LGL)
nodes (fast implementation).

I LGL quadrature for integration implies diagonal mass matrix
I Allow material parameters to vary on element
I Careful implementation of flux is required on hanging faces.
I Time discretization through method-of-lines (we use RK4 or

low-memory 5-stage 4th order)
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Elastic wave propagation
Plane-wave problem in periodic cube
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Elastic-acoustic wave propagation
Snell’s Law verification (simulation is 3D)
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Elastic-acoustic wave propagation
Snell’s Law verification
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More interface problems
Rayleigh, Lamb, Scholte and Stoneley wave verification
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L2-convergence
Scholte wave example
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Scalability on Jaguar supercomputer at ORNL
Cray XT-5, 224,256 cores (AMD Istanbul 6 cores/proc, 2 proc/node), 2.3 petaflops

Figure: Image courtesy of the National Center for Computational Sciences, Oak Ridge
National Laboratory
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Scalability for PREM test problem
Ricker wavelet source with 0.28 Hz (plots are for lower frequency)

Element size tailored to local wave speeds; cubed sphere-based
discretization, the mesh resolves interfaces in PREM.
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Strong scalability on CPUs
ORNL Jaguar system (Cray XT5 with dual AMD Istanbul 6-core nodes)

# proc meshing wave prop par eff Tflops
cores time (s) per step (s) wave

32,640 6.32 12.76 1.00 25.6
65,280 6.78 6.30 1.01 52.2

130,560 17.76 3.12 1.02 105.5
223,752 47.64 1.89 0.99 175.6

I 6th order elements with at least 10 points per wavelength
I 170 million elements, 53 billion unknowns
I meshing time = time for parallel generation of the mesh

(adapted to local wave speed) prior to wave propagation
solution

I Wave prop per step is the runtime (s) per time step of the
wave propagation solve

I Tflops is double precision teraflops/s based on PAPI
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Scalability (speedup) on GPUs (with Tim Warburton, Rice)
Speedup on TACC’s GPU cluster (Longhorn)

#GPUs #elem Gflops time mesh
per GPU per GPU per elem (s) time (s)

64 27793 79.3485 5.96801e-06 8.82812
128 13896 78.4707 6.05867e-06 4.71147
256 6948 75.4989 6.32710e-06 3.30853
478 3721 70.1133 6.84000e-06 1.85288

I Speedup for run with 1.78M elements of 7-th order

I largest run sustains about 35TF (single precission)

I speedup of 50–100× (compared to double precission CPU
code)

I Longhorn = 512 NVIDIA FX 5800 GPUs each with 4GB
graphics memory and 512 Intel Nehalem quad core processors
connected by QDR InfiniBand interconnect
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Inversion for local wave speeds (time domain)

I would like to estimate the Hessian corresponding to

J (cp, cs) :=
1
2

∫ T

0

∫
B
B(x)(v − vdata)2 dx +R(cp, cs)

where the elastic/acoustic wave equation maps (cp, cs) into v

I vdata are waveform observations at receivers, R is a
regularization/prior operator, and B(x) is an observation
operator that reflects receiver locations and weights

I Lagrangian functional approach

I gradient/Hessian computed via adjoints

I consistent gradient through discretize-then-optimize (DTO)
approach

I can show equivalence between DTO and OTD
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First-order optimality conditions

I State equations

ρ
∂v

∂t
= ∇ · (CE) + f in Ω× (0, T )

C
∂E

∂t
=

1
2
C(∇v + ∇vT ) in Ω× (0, T )

ρv = CE = 0 in Ω× {t = 0}

I Adjoint equations (w = adjoint velocity; H=adjoint strain)

−ρ∂w

∂t
= ∇ · (C∗H)− B(v − vobs) in Ω× (0, T )

C∗ ∂H

∂t
=

1
2
C∗(∇w + ∇wT ) in Ω× (0, T )

ρw = C∗H = 0 in Ω× {t = T}

I Gradient equations (for general tensor C; no regularization)

g =
∫ T

0

[
1
2

(∇w + ∇wT )⊗E + H ⊗ ∂E

∂t
− 1

2
H ⊗ (∇v + ∇vT )

]
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Discrete DG adjoint and gradient/sensitivity kernels

I The adjoint DG equation is a wave equation in strain-velocity
(H,w), in opposite time direction.

I The numerical flux becomes an downwind flux, i.e., an upwind
flux in negative time direction

I Gradient/Sensitivity kernel involve DG-specific face terms, for
instance the sensitivity w. r. cp:

V e
p =2ρcp (∇ ·w) tr(E),

Se
p =− k2

0ρ
−n · [[CE]]n · [[CH]] + k2

0ρ
− (ρ+cp

+
)2 [[v]][[w]]

+ k2
0ρ
−ρ+cp

+ (n · [[CE]][[w]]− [[v]]n · [[CH]])
+ 2k0ρ

−cp
− tr(E−)

(
n · [[CH]]− ρ+cp

+[[w]]
)
.

Face terms are needed for exact DG-gradient/sensitivity!
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Hessian–vector products

I data misfit Hessian–vector products resemble gradient
computation; are needed to solve Newton step by CG and to
estimate the inverse Hessian for covariance estimate

I steps to form product of Gauss-Newton Hessian at the
“point” (cp, cs) in the “direction” (ĉp, ĉs):

1. solve the forward wave equation with given material fields
(cp, cs) to obtain the forward strain and velocity (E,v)

2. linearize the forward wave equation at the point (cp, cs) (and
corresponding forward strain and velocity) in the direction
(ĉp, ĉs)

3. solve the linearized forward wave equation to obtain the
incremental forward strain and velocity (Ê, v̂)

4. solve the adjoint wave equation backwards in time, driven by
the incremental forward velocity v̂ at observation points,
yielding the incremental adjoint strain and velocity (Ĥ, ŵ)

5. use the gradient expression to compute the GN Hessian–vector
product, but use (E,v) with (Ĥ, ŵ)
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4. solve the adjoint wave equation backwards in time, driven by
the incremental forward velocity v̂ at observation points,
yielding the incremental adjoint strain and velocity (Ĥ, ŵ)
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Application to inverse wave propagation in Marmousi
Use that inverse Hessian is covariance matrix

I heterogeneous Marmousi model

I iid data and prior covariances

I wave speeds between 1.5 and 5 km/s

I domain is 10 × 10 × 5 km3

I Ricker wavelet, central frequency of 8Hz
⇒ 16–53 wavelengths vertically; 32–106 horizontally

I largest mesh has 64 × 64 × 32 4th-order elements (16 million
DOFs)

I parameter field represented on same mesh as forward/adjoint fields
⇒ 16 million parameters

I inverse Hessian estimate in 500 Lanczos iterations, 1500
forward/adjoint solves

I low-rank-based variance field approximation computed in 6h on
1600 cores (full Hessian would require O(104) hours on 1600 cores)
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Target medium, p-wave velocity

I test setting: 5 sources on bottom; 81 receivers on top

I stress-free boundary conditions (should be PML)
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Variance field
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Summary

I high-order DG for wave propagation through coupled
elastic-acoustic media

I near-optimal weak and strong scaling; CPU/GPU
implementation

I discretely consistent adjoints and gradients for seismic
inversion

I estimate variance using low-rank approximation of Hessian

Partially supported by NSF’s PetaApps program (OCI-0749334, OCI-0749045, and

OCI-0748898), DOE Office of Science’s SciDAC program (DE-FC02-06ER25782),

NSF grants CNS-0619838 and DMS-0724746, and AFOSR grant FA9550-09-1-0608.
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