
Practicals : Hands on Session for 

Programming GPUs

Tech-X Corporation
5621 Arapahoe Ave., Boulder, CO 80303

http://www.txcorp.com

Paul Mullowney
paulm@txcorp.com

Tech-X UK Ltd

Daresbury Innovation Centre

Keckwick Lane

Daresbury

Cheshire WA4 4FS, UK

http://www.txcorp.co.uk

Tech-X GmbH

Claridenstrasse 25

CH-8027 Zurich

Switzerland

http://www.txcorp.ch

http://www.txcorp.com/


Outline

• A Few Examples to Get you Started 

• A Real Problem : A Wave Equation Solver on the GPU

• Problem Description

• Mathematical Algorithm

• Example Code Structure

• GPU Implementation using PGI Cuda Fortran

• Simplistic Approach

• A more advanced implementation ... Aligned 

memory

• Other tricks?

• Strategies for minimizing then cost of host-device 

data transfer

• Analysis

• Strategies for Porting Codes to GPUs



Getting/Building the first CUDA example

• On the machine, do

source /opt/env/pgi.env

• Copy file from /opt/training/gpu to your home

cp /home/quest/Software_depot/training/gpu/first.cuf .

• Compile

pgf90 first.cuf

• Run

./a.out



Running/Modifying the first CUDA example

• GOAL: edit first.cuf to get some non-zero 

result that runs on a GPU.

Write a kernel that computes the sqrt() of all 

elements of a “small” vector element-wise. 

• With your favourite editor, open first.cuf and 

add the following line after the last variable 

declaration. 

If you sit on the left side of the room, do

ierr = cudaSetDevice(0)

If you sit on the right side of the room, do

ierr = cudaSetDevice(1)



Running/Modifying the first CUDA example

Let‟s learn something about the device we‟re running on. Add the 

followind variable declaration.

type(cudadeviceprop) :: prop

For the left side of the room, add the code below cudaSetDevice()

ierr = cudaGetDeviceProperties(prop, 0)

print *, “Name of my GPU is “, prop%name

For the right side of the room, do

ierr = cudaGetDeviceProperties(prop, 1)

print *, “Name of my GPU is “, prop%name

Hre‟s a possibly complete list of the properties:

name, totalGlobalMem, regsPerBlock, warpSize, 

memPitch, maxThreadsPerBlock, maxThreadsDim(3), 

maxGridSize(3), clockRate, totalConstMem, major, 

minor, textureAlignment, ...



Modifying the first CUDA example

• What‟s needed? The following are necessary 

elements of a host driver code.

– Device variable declarations

– Need to allocate memory on the device

– Need to transfer host data to the device

– Need  to launch the kernel 

– Need to transfer device data back to the host

– Need to deallocate space on the device

• Multiple ways of doing this in CUDA Fortran

real, device, allocatable, dimension(:) :: 

dev_variable

then

ierr = cudaMalloc(dev_variable,n)

or

allocate(dev_variable(n))



Modifying the first CUDA example

• What‟s needed? The following are necessary 

elements of a host driver code.

– Device variable declarations

– Need to allocate memory on the device

– Need to transfer host data to the device

– Need  to launch the kernel 

– Need to transfer device data back to the host

– Need to deallocate space on the device

• Multiple ways of doing this in CUDA Fortran

real src(n)

real, device, allocatable, dimension(:) :: 

dev_variable

then

error = cudaMemcpy(dev_variable, src, n)

or

dev_variable = src



Modifying the first CUDA example

• What‟s needed? The following are necessary 

elements of a host driver code.

– Device variable declarations

– Need to allocate memory on the device

– Need to transfer host data to the device

– Need  to launch the kernel 

– Need to transfer device data back to the host

– Need to deallocate space on the device

• Multiple ways of doing this in CUDA Fortran

real res(n)

real, device, allocatable, dimension(:) :: 

dev_variable

then

error = cudaMemcpy(res, dev_variable, n)

or

res = dev_variable



Modifying the first CUDA example

• What‟s needed? The following are necessary 

elements of a host driver code.

– Device variable declarations

– Need to allocate memory on the device

– Need to transfer host data to the device

– Need  to launch the kernel 

– Need to transfer device data back to the host

– Need to deallocate space on the device

• Multiple ways of doing this in CUDA Fortran

real, device, allocatable, dimension(:) :: 

dev_variable

then

error = cudaFree(dev_variable)

or

deallocate(dev_variable)



Modifying the first CUDA example

• When making direct calls to CUDA API 

functions, ALWAYS check the error status at 

the end of a function call.

ierr = cudaFree(dev_variable)

if (ierr.ne.0) then

print *, “Error in cudaFree for dev_variable

: “, cudaGetErrorString(ierr)

stop

else

print *, “Success in cudaFree!”

endif



Modifying the first CUDA example

• What‟s needed? The following are necessary 

elements of a host driver code.

– Device variable declarations

– Need to allocate memory on the device

– Need to transfer host data to the device

– Need  to launch the kernel 

– Need to transfer device data back to the host

– Need to deallocate space on the device

• What‟s the kernel? 

– Recall that we want to compute the sqrt() of a 

vector element-wise.

– Where is the parallelism?

• How do I Launch a Kernel?



Your Very First CUDA Kernel

• Kernels have the following skeleton

attributes(global) subroutine myKernel(a,n)

!

! WHAT NOW??

!

!

end subroutine



Your Very First CUDA Kernel

• Kernels have the following skeleton

attributes(global) subroutine myKernel(src,n)

implicit none

real src(n)

integer, value :: n

integer tx, bx

tx = threadidx%x

bx = blockidx%x

src(tx) = sqrt(src(tx))

end subroutine myKernel



Launching Kernels

• How do I use the Kernel

call myKernel(dev_variable, n)

• What‟s wrong here?

– Calling the kernel requires a slight modification to 

the normal Fortran syntax

– Use the “chevron” notation

call myKernel<<<1,n>>>(dev_variable, n) 

• Recompile and Run the code



Launching Kernels

• In the main program in first.cuf , set the 

parameter n to 2000 elements. Recompile and 

run.

• What happens? Are the results correct? Does 

anything fail? 

• Add the following line before the kernel call

print *, maxThreadsDim

• Recompile and run.



Launching Kernels

• How do I fix the code to run for larger vector sizes:

• On the host, add

integer numThreads, numBlocks

numThreads = 512

numBlocks = ceiling(n/numThreads)

call myKernel<<<numBlocks,numThreads>>>(dev_variable,n) 

• Ok, How Do I fix the Kernel code?



Launching Kernels

• Ok, How Do I fix the Kernel code?

attributes(global) subroutine myKernel(src,n)

implicit none

real src(n)

integer, value :: n

integer tx, bx, indx

tx = threadidx%x

bx = blockidx%x

indx = tx + (bx-1)*blockDim%x

src(indx) = sqrt(src(indx))

end subroutine

• Any problems here????



Launching Kernels

• Ok, How Do I fix the Kernel code?

attributes(global) subroutine myKernel(src,n)

implicit none

real, dimension(:) :: src

integer, value :: n

integer tx, bx, indx

tx = threadidx%x

bx = blockidx%x

indx = tx + (bx-1)*blockDim%x

If (indx.le.n) then

src(indx) = sqrt(src(indx))

endif

end subroutine



Analyzing Performance

• Recompile and rerun the code. What happens. Do the results look 

correct?

• Next, let‟s bump up the size of the vector to something large, say 

n=1000000. Remove the print statement of the result.

• Let‟s add some timing code.

integer count1, count2, max, rate

real*8 dt

call system_clock ( count1, rate, max)

! Put code in here

call system_clock ( count2, rate, max)

dt = real(count2-count1,kind=8)/real(rate, kind = 8)

print *, "time =", dt, 'second?



Analyzing Performance

• Be sure to write a CPU version of the sqrt() kernel.

do i=1,n

res(i) = sqrt(src(i))

enddo

• Place the following after the kernel launch

ierr = call cudaThreadSynchronize()

• Place timers around a CPU sqrt computation. Print the time.

• Place timers around the GPU computation + the 

cudaThreadSynchronize() call. Print the time.

• Next, extend the timing of the GPU region to include the 

transfers.

• Next, extend the timing of the GPU region to include the 

allocations.

• Next, change the sqrt() kernel to do something like scalar 

addition.



3D Wave Equation

• The 3D wave equation with constant wave speed, c,  is written

• Finite Difference Time Domain (FDTD) is a typical numerical 

approach for solving the wave equation. 

• Schemes are 

• time-explicit and usually 2nd order in time

• High-order accuracy in space can easily be achieved:



3D Wave Equation

• Inserting expansions into wave-equation yields a numerical scheme 

for computing                     , i.e.

• Coefficients are:

• 2nd Order in space (k=2):

• 4th Order in space (k=4):



3D Wave Equation : Stability

• Courant-Friedrich-Lewy Condition (CFL)

• 2nd Order in space:

• 4th Order in space:

• If a wave is crossing a discrete grid, then the timestep must be less than the 

time for the wave to travel adjacent grid points.

• Nasty side effect in 3D: doubling the number of grid cells in the x-

direction (cutting the spacing in half), yields a factor of 16 more work 

(not 8!)



Our Simple Numerical Exercise

• Goal : Develop GPU implementations of the 3D wave equation 

solver:

• Auxiliary Goal: explore the effect of key device features on the 

performance of the code.

• We will “ignore” certain important aspects of the simulation, 

including 

• Boundary conditions ... Highly important to deal with these 

correctly. 

• Correctly, setting the initial conditions ... There are “two” of these 

here since the time stepping scheme depends on value from the 

two previous time steps. This is NOT important to deal with from 

the GPU perspective.

• No time-dependent sources ... Like boundary conditions, it can 

be important to deal with these correctly if they are present. 



Our Simple Numerical Exercise

• Set the number of Grid cells and time steps at compile 

time

• This will likely incur compiler optimizations

• Set the wave speed, c, to 1, without loss of generality

• Initialize the simulation with a delta function –like spike at 

the center of the domain.

• Since the update requires values from the 2 previous 

time steps, define 3 buffers: utp1, ut, utm1 to store the 

data.



The Physical Domain

• The picture shows an xy-slice 

of the domain with 4 ghost 

cells in each direction. 8th

order in space.

• In our code, we will consider 

only 2nd and 4th order in space.

• Thus, our domains will have 1 

or 2 ghost (guard) cells 

respectively.

• In our code, x is the fastest 

varying dimension followed by 

y and z. This has important 

considerations for the device 

kernels.



Code Structure

driver.CUF

• Initializes simulation parameters and storage buffers

• Calls fdtdCPU/GPUDriver subroutines

• Calls timing functions for assessing speedup

•Checks results … always do this rigorously!!!!

fdtdCPU.CUF
• triple buffered time-stepping

• OpenMP directives included around 

the core loop

fdtdGPU.CUF
• currently has 3 waveEqUpdateDriver

subroutines (host code)

• each subroutine uses distinct CUDA Fortran 

features.

• triple buffered time-stepping in the 

waveEqUpdateDriver subroutines.



CPU Code Structure (with OpenMP directives)

!$OMP   PARALLEL DO &

!$OMP   DEFAULT(SHARED) &

!$OMP   PRIVATE(i, j, k, p)

do k=1+Nghost,Nz+Nghost

do j=1+Nghost,Ny+Nghost

do i=1+Nghost,Nx+Nghost

unew(i,j,k) = -uold(i,j,k) + (2+dt2*c0)*ucurrent(i,j,k)

do p=1,Nghost

unew(i,j,k)=unew(i,j,k)        &

+ dt2*c1x(p)*(ucurrent(i+p,j,k)+ucurrent(i-p,j,k)) &

+ dt2*c1y(p)*(ucurrent(i,j+p,k)+ucurrent(i,j-p,k)) &

+ dt2*c1z(p)*(ucurrent(i,j,k+p)+ucurrent(i,j,k-p)) 

enddo

enddo

enddo

enddo

!$OMP   END PARALLEL DO



GPU Implementation 1

• Driver code : waveEqUpdateGPUDriver1 

• Data allocation and freeing

• Data transfer from CPU-GPU and vice versa

• Kernel setup parameters

• Time stepping and kernel invocation

• Kernel : waveEqUpdateGPUKernel1

• Vectorized kernel code

• Use of constant device memory for coefficients

• Array indexing via thread and block values



waveEqUpdateGPUDriver1

subroutine waveEqUpdateGPUDriver1(Nx,Ny,Nz,Nghost,Nt,u0,u1,u2,dt)

implicit none

!-----input

integer Nx,Ny,Nz,Nghost,Nt

real dt

real u0(Nx+2*Nghost,Ny+2*Nghost,Nz+2*Nghost)

real u1(Nx+2*Nghost,Ny+2*Nghost,Nz+2*Nghost)

real u2(Nx+2*Nghost,Ny+2*Nghost,Nz+2*Nghost)

!-----temporary device arrays and data

real, device, allocatable, dimension(:,:,:) :: dev_u0, dev_u1, dev_u2

type(dim3) :: dimGrid, dimBlock

integer it

!-----allocations

allocate(dev_u0(Nx+2*Nghost,Ny+2*Nghost,Nz+2*Nghost))

allocate(dev_u1(Nx+2*Nghost,Ny+2*Nghost,Nz+2*Nghost))

allocate(dev_u2(Nx+2*Nghost,Ny+2*Nghost,Nz+2*Nghost))

!-----transfer ... using overloaded = operator

dev_u0 = u0(1:Nx+2*Nghost,1:Ny+2*Nghost,1:Nz+2*Nghost)

dev_u1 = u1(1:Nx+2*Nghost,1:Ny+2*Nghost,1:Nz+2*Nghost)

dev_u2 = u2(1:Nx+2*Nghost,1:Ny+2*Nghost,1:Nz+2*Nghost)



waveEqUpdateGPUDriver1

subroutine waveEqUpdateGPUDriver1(Nx,Ny,Nz,Nghost,Nt,u0,u1,u2,dt)

implicit none

…

!-----transfer ... using overloaded = operator

dev_u0 = u0(1:Nx+2*Nghost,1:Ny+2*Nghost,1:Nz+2*Nghost)

dev_u1 = u1(1:Nx+2*Nghost,1:Ny+2*Nghost,1:Nz+2*Nghost)

dev_u2 = u2(1:Nx+2*Nghost,1:Ny+2*Nghost,1:Nz+2*Nghost)

!-----thread, block configuration

dimGrid = dim3(Ny,Nz,1)

dimBlock = dim3(Nx,1,1)

! Time-stepping with kernel calls.

do it=1,Nt

if (mod(it,3).eq.1) then
call waveEqUpdateGPUKernel1<<<dimGrid,dimBlock>>>(Nx,Ny,Nz,Nghost,dev_u0,dev_u1,dev_u2,dt)

elseif (mod(it,3).eq.2) then
call waveEqUpdateGPUKernel1<<<dimGrid,dimBlock>>>(Nx,Ny,Nz,Nghost,dev_u1,dev_u2,dev_u0,dt)

else
call waveEqUpdateGPUKernel1<<<dimGrid,dimBlock>>>(Nx,Ny,Nz,Nghost,dev_u2,dev_u0,dev_u1,dt)

endif

enddo



waveEqUpdateGPUDriver1

subroutine waveEqUpdateGPUDriver1(Nx,Ny,Nz,Nghost,Nt,u0,u1,u2,dt)

implicit none

…

! Time-stepping with kernel calls.

do it=1,Nt

if (mod(it,3).eq.1) then
call waveEqUpdateGPUKernel1<<<dimGrid,dimBlock>>>(Nx,Ny,Nz,Nghost,dev_u0,dev_u1,dev_u2,dt)

elseif (mod(it,3).eq.2) then
call waveEqUpdateGPUKernel1<<<dimGrid,dimBlock>>>(Nx,Ny,Nz,Nghost,dev_u1,dev_u2,dev_u0,dt)

else
call waveEqUpdateGPUKernel1<<<dimGrid,dimBlock>>>(Nx,Ny,Nz,Nghost,dev_u2,dev_u0,dev_u1,dt)

endif

enddo

!-----transfer back... using overloaded = operator

u0(1:Nx+2*Nghost,1:Ny+2*Nghost,1:Nz+2*Nghost) = dev_u0

u1(1:Nx+2*Nghost,1:Ny+2*Nghost,1:Nz+2*Nghost) = dev_u1

u2(1:Nx+2*Nghost,1:Ny+2*Nghost,1:Nz+2*Nghost) = dev_u2

!-----deallocations

deallocate(dev_u0, dev_u1, dev_u2)

end subroutine waveEqUpdateGPUDriver1



waveEqUpdateGPUKernel1 : Device Code

attributes(global) subroutine

waveEqUpdateGPUKernel1(Nx,Ny,Nz,Nghost,u0,u1,u2,dt)

implicit none

integer, value :: Nx, Ny, Nz, Nghost

real :: u0(Nx+2*Nghost,Ny+2*Nghost,Nz+2*Nghost)

real :: u1(Nx+2*Nghost,Ny+2*Nghost,Nz+2*Nghost)

real :: u2(Nx+2*Nghost,Ny+2*Nghost,Nz+2*Nghost)

real, value :: dt

integer p, by, bz, tx, indx, indy, indz

real dt2, temp_u2

tx = threadidx%x

by = blockidx%x

bz = blockidx%y

**** Recall : the driver (host code) function had variables as ***

real, device, allocatable, dimension(:,:,:) :: dev_u0, dev_u1, dev_u2



waveEqUpdateGPUKernel1 : Device Code

attributes(global) subroutine waveEqUpdateGPUKernel1(Nx,Ny,Nz,Nghost,u0,u1,u2,dt)

implicit none

…

tx = threadidx%x

by = blockidx%x

bz = blockidx%y

indx = tx + Nghost

indy = by + Nghost

indz = bz + Nghost

! Only compute in the physical region 

if (tx.gt.Nghost .and. tx.le.Nx+Nghost) then

dt2 = dt*dt

temp_u2 = -u0(indx,indy,indz) + (2.+dt2*dev_c0)*u1(indx,indy,indz)

do p=1,Nghost

temp_u2 = temp_u2 &

+ dt2*dev_c1x(p)*(u1(indx+p,indy,indz)+u1(indx-p,indy,indz)) & 

+ dt2*dev_c1y(p)*(u1(indx,indy+p,indz)+u1(indx,indy-p,indz)) &

+ dt2*dev_c1z(p)*(u1(indx,indy,indz+p)+u1(indx,indy,indz-p))

enddo

u2(indx,indy,indz) = temp_u2

endif

end subroutine waveEqUpdateGPUKernel1

Where did the 

loops in the CPU 

code go?????



Parallelization Choices in the Grid and Block 

Configuration.

!-----thread, block configuration

dimGrid = dim3(Ny,Nz,1)

dimBlock = dim3(Nx,1,1)

x

y

z

BlockId : 1,1

BlockId : 2,1

BlockId : 3,1

Thread 1 Thread 2

BlockId : 42,42

The parallelization is contained 

in the grid and block 

configuration!!!!

Thread 3

Thread Nx



Where did the Loops Go?

!-----thread, block configuration

dimGrid = dim3(Ny,Nz,1)

dimBlock = dim3(Nx,1,1)

The parallelization is contained 

in the grid and block 

configuration!!!!

tx = threadidx%x

by = blockidx%x

bz = blockidx%y

indx = tx + Nghost

indy = by + Nghost

indz = bz + Nghost

! Only compute in the physical region 

temp_u2 = -u0(indx,indy,indz) + (2.+dt2*dev_c0)*u1(indx,indy,indz)

do p=1,Nghost

temp_u2 = temp_u2 &

+ dt2*dev_c1x(p)*(u1(indx+p,indy,indz)+u1(indx-p,indy,indz)) & 

+ dt2*dev_c1y(p)*(u1(indx,indy+p,indz)+u1(indx,indy-p,indz)) &

+ dt2*dev_c1z(p)*(u1(indx,indy,indz+p)+u1(indx,indy,indz-p))

enddo

Thread and block indices play the analogous 

of loop indices in CPU code

Y and Z loops are contained in the dimGrid configuration. The Loop 

in x is contained in the dimBlock configuration.



waveEqUpdateGPUKernel1 : Device Code

Good Practices

! Only compute in the physical region 

if (tx.gt.Nghost .and. tx.le.Nx+Nghost) then

dt2 = dt*dt

temp_u2 = -u0(indx,indy,indz) + (2.+dt2*dev_c0)*u1(indx,indy,indz)

do p=1,Nghost

temp_u2 = temp_u2 &

+ dt2*dev_c1x(p)*(u1(indx+p,indy,indz)+u1(indx-p,indy,indz)) & 

+ dt2*dev_c1y(p)*(u1(indx,indy+p,indz)+u1(indx,indy-p,indz)) &

+ dt2*dev_c1z(p)*(u1(indx,indy,indz+p)+u1(indx,indy,indz-p))

enddo

u2(indx,indy,indz) = temp_u2

endif

• If a variable is repeatedly updated by a single thread, then

• USE register variables 

• Write to Global Memory Once!!!!!

• Highly important on TESLA 1060 series (and earlier) GPUs

**Possibly not as important FERMI**



waveEqUpdateGPUKernel1 : Device Code

Good Practices

! Only compute in the physical region 

if (tx.gt.Nghost .and. tx.le.Nx+Nghost) then

dt2 = dt*dt

temp_u2 = -u0(indx,indy,indz) + (2.+dt2*dev_c0)*u1(indx,indy,indz)

do p=1,Nghost

temp_u2 = temp_u2 &

+ dt2*dev_c1x(p)*(u1(indx+p,indy,indz)+u1(indx-p,indy,indz)) & 

+ dt2*dev_c1y(p)*(u1(indx,indy+p,indz)+u1(indx,indy-p,indz)) &

+ dt2*dev_c1z(p)*(u1(indx,indy,indz+p)+u1(indx,indy,indz-p))

enddo

u2(indx,indy,indz) = temp_u2

endif

What‟s this???

dev_c0, dev_c1x, dev_c1y, dev_c1z were NOT declared in 

the function or in the signature.



• In the module fdtdGPU.CUF, we do

• In the fdtdGPUDriver subroutine, we do

waveEqUpdateGPUKernel1 : Device Code

Using Constant data

module fdtdGPU

use cudafor

!-----coefficients are stored in constant data

real, constant :: dev_c0

real, constant :: dev_c1x(2), dev_c1y(2), dev_c1z(2)

contains

…

!-----coefficients are copied to constant data

dev_c0  = c0

dev_c1x = c1x 

dev_c1y = c1y

dev_c1z = c1z



• Use constant data for small sets of data reusable across all 

thread blocks

• Constant data can only be altered by a Host subroutine

• Constant data can be used for computation in host 

subroutines

• DO NOT DO THIS! 

• Why?  The data lives on the device. If you attempt 

to use it on the host, each call will issue a memcpy

operation from device to host. BAD!!!!

waveEqUpdateGPUKernel1 : Device Code

Best Practices Using Constant data



• In the module fdtdGPU.CUF, we do

• If you want to do parallel-GPU computation with a single CPU 

core controlling a single GPU, then one must set the device 

for each rank via the following (in driver.CUF)

** Problem ** The call to cudaSetDevice MUST be the first cuda

API call that executes code on the device. 

BEWARE Module Variables!!!!

module fdtdGPU

use cudafor

!-----coefficients are stored in constant data

real, constant :: dev_c0

real, constant :: dev_c1x(2), dev_c1y(2), dev_c1z(2)

cudaError = cudaSetDevice(myCpuRank)



• In the module fdtdGPU.CUF, we do

• In the FDTD Program, we do

BEWARE Module Variables!!!!

module fdtdGPU

use cudafor

!-----coefficients are stored in constant data

real, constant :: dev_c0

real, constant :: dev_c1x(2), dev_c1y(2), dev_c1z(2)

Program FDTD_3D

use cudafor

use fdtdGPU

use fdtdCPU

implicit none

…

cudaError = cudaSetDevice(myCpuRank)

•This code performs allocations on 

the device!!

• cudaSetDevice does not happen 

first!!! 



• P. Micikevicius. “3D Finite Difference Computation on GPUs 

using CUDA,” Proceedings of Supercomputing 2009.

Other Parallelization Strategies

BlockId: 1,1

• Each panel is a 16x16 

(or 32x32) grid of cells 

in a plane parallel to 

the xy plane and a 

single cell in z

• A single warp (thread 

block) does the 

computation for one of 

these panels. 

• Strategy “could” 

benefit from advanced 

device featuresBlockId: 2,1

x

z



• Key to good performance : Memory coalescence and 

Minimize reads/write to global memory!

GPU Implementation 2

x

y

z

Thread j

• For coalescence, 

consecutive threads must 

read adjacent slots 

memory 

• Ideally, each thread block 

will read a multiple of 16 

or 32 memory slots in a 

single instruction.

• For arbitrary size domain 

in x, this does not 

happen!

• Solution, pad the 

memory in the fast 

varying dimension. 



• Not all memory accesses can benefit from coalescence

• Typically, one attempts to get coalescence for memory 

reads/writes parallel to the fastest varying dimension (x)

• For this computation, all reads should be coalesced provided 

we pad/pitch the memory in the x-direction

• waveEqUpdateGPUDriver2/Kernel2

GPU Implementation 2



waveEqUpdateGPUDriver2 : cudaMallocPitch

subroutine waveEqUpdateGPUDriver2(Nx,Ny,Nz,Nghost,Nt,u0,u1,u2,dt)

implicit none

!-----input

integer Nx,Ny,Nz,Nghost,Nt

real dt

real u0(Nx+2*Nghost,Ny+2*Nghost,Nz+2*Nghost)

real u1(Nx+2*Nghost,Ny+2*Nghost,Nz+2*Nghost)

real u2(Nx+2*Nghost,Ny+2*Nghost,Nz+2*Nghost)

!-----temporary device arrays and data

real, device, allocatable, dimension(:,:) :: dev_u0, dev_u1, dev_u2

type(dim3) :: dimGrid, dimBlock

integer it

integer pitch, width, height, error0, error1, error2

!-----allocations via cudaMallocPitch

error0 = cudaMallocPitch(dev_u0, pitch, Nx+2*Nghost, (Ny+2*Nghost)*(Nz+2*Nghost))

error1 = cudaMallocPitch(dev_u1, pitch, Nx+2*Nghost, (Ny+2*Nghost)*(Nz+2*Nghost))

error2 = cudaMallocPitch(dev_u2, pitch, Nx+2*Nghost, (Ny+2*Nghost)*(Nz+2*Nghost))

!-----error checking

if (error0.ne.0.or. error1.ne.0.or error2.ne.0) then

print *, “Something BAD Happened!!!!“

stop

endif



• What is going on in this code?

• In the first driver code, we used the allocate statement. Using allocate, a 

contiguous chunk of memory is a line in x-direction for fixed y and fixed z.

• Using cudaMallocPitch, a contiguous chunk of memory is a padded-line 

in the x-direction for fixed x and y.

• Pitch depends on the model of the GPU. On FERMI, arrays are 

padded/pitched to multiples of 128.

waveEqUpdateGPUDriver2 : cudaMallocPitch

!-----allocations via cudaMallocPitch

error0 = cudaMallocPitch(dev_u0, pitch, Nx+2*Nghost, (Ny+2*Nghost)*(Nz+2*Nghost))



• Linear memory will have the following structure:

• Red cells are unphysical ... Padded/Pitched region. 

• cudaMallocPitch produces a 2D data structure.

*** Slower varying dimensions are stacked to fake 3D ***

• Ideally, use cudaMalloc3D to get a 3D a pitched 3D data 

structure. Was not working correctly in PGI 10.4. Should 

be fixed in 10.

*** Challenging to use cudaMalloc3D, cudaMemcpy3D ***

waveEqUpdateGPUDriver2 : cudaMallocPitch

ix=1...Nx_pitch, 

iy=1, iz=1

ix=1...Nx_pitch, 

iy=2, iz=1

ix=1...Nx_pitch, 

iy=3, iz=1

ix=1...Nx_pitch, 

iy=4, iz=1



3D Host memory needs to be mapped into 2D pitched 

device memory

waveEqUpdateGPUDriver2 : cudaMemcpy2D

!-----transfer from 3D Host to the 2D pitched memory ... requires care

call cudaMemcpy3DHostTo2DDevice(dev_u0, pitch, u0, Nx+2*Nghost, &

Nx+2*Nghost, Ny+2*Nghost, Nz+2*Nghost)

!----a subroutine for doing 3D → 2D mapping (and the reverse)

subroutine cudaMemcpy3DHostTo2DDevice(dstPtr, dstPitch, &

srcPtr, srcPitch, width, height, depth)

implicit none

!     input parameters

real, device, allocatable, dimension(:,:) :: dstPtr

real, dimension(:,:,:) :: srcPtr

integer :: dstPitch, srcPitch, width, height, depth

!     cudaMemcpy2D

error = cudaMemcpy2D(dstPtr, dstPitch, srcPtr, srcPitch, &

width, height*depth, cudaMemcpyHostToDevice)



waveEqUpdateGPUDriver2

subroutine waveEqUpdateGPUDriver2(Nx,Ny,Nz,Nghost,Nt,u0,u1,u2,dt)

implicit none

…

!-----thread, block configuration

dimGrid = dim3(Ny,Nz,1)

dimBlock = dim3(pitch,1,1)

! Time stepping loop

do it=1,Nt

if (mod(it,3).eq.1) then

call    
waveEqUpdateGPUKernel2<<<dimGrid,dimBlock>>>(Nx,Ny,Nz,Nghost,pitch,dev_u0,dev_u1,dev_u2,dt)

elseif (mod(it,3).eq.2) then

call 
waveEqUpdateGPUKernel2<<<dimGrid,dimBlock>>>(Nx,Ny,Nz,Nghost,pitch,dev_u1,dev_u2,dev_u0,dt)

else

call 
waveEqUpdateGPUKernel2<<<dimGrid,dimBlock>>>(Nx,Ny,Nz,Nghost,pitch,dev_u2,dev_u0,dev_u1,dt)

endif

enddo

!-----transfer back from 2D pitched memory to 3D Host ... requires care

call cudaMemcpy2DDeviceTo3DHost(u2, Nx+2*Nghost, dev_u2, pitch, &

Nx+2*Nghost, Ny+2*Nghost, Nz+2*Nghost)

!-----deallocations via cudaFree … same for dev_u0, dev_u1

error2 = cudaFree(dev_u2)

Each thread block has 

pitch threads!



waveEqUpdateGPUKernel2

attributes(global) subroutine waveEqUpdateGPUKernel2(Nx,Ny,Nz,Nghost,Nt,u0,u1,u2,dt)

implicit none

integer, value :: Nx, Ny, Nz, Nghost, pitch

real :: u0(pitch, (Ny+2*Nghost)*(Nz+2*Nghost))

real :: u1(pitch, (Ny+2*Nghost)*(Nz+2*Nghost))

real :: u2(pitch, (Ny+2*Nghost)*(Nz+2*Nghost))

real, value :: dt

integer p, by, bz, tx, ind_y_z, ind_ymp_z, ind_ypp_z , ind_y_zmp, ind_y_zpp

integer NyExt

real dt2, temp_u2

tx = threadidx%x

by = blockidx%x

bz = blockidx%y

NyExt = Ny+2*Nghost

ind_y_z = by + Nghost + (bz + Nghost - 1)*NyEx

Arrays are now 2D in 

the kernel!



waveEqUpdateGPUKernel2
attributes(global) subroutine waveEqUpdateGPUKernel2(Nx,Ny,Nz,Nghost,Nt,u0,u1,u2,dt)

Implicit none

…

tx = threadidx%x

by = blockidx%x

bz = blockidx%y

NyExt = Ny+2*Nghost

ind_y_z = by + Nghost + (bz + Nghost - 1)*NyExt

! Do not compute in the ghost cells or the pitched region

if (tx.gt.Nghost .and. tx.le.(Nx+Nghost)) then

dt2 = dt*dt

temp_u2 = -u0(tx, ind_y_z)+ (2.+dt2*dev_c0)*u1(tx, ind_y_z)

do p=1,Nghost

ind_ymp_z = ind_y_z-p

ind_ypp_z = ind_y_z+p

ind_y_zmp = ind_y_z-p*NyExt

ind_y_zpp = ind_y_z+p*NyExt

temp_u2 = temp_u2 &

+ dt2*dev_c1x(p)*(u1(tx+p, ind_y_z)+u1(tx-p, ind_y_z)) &

+ dt2*dev_c1y(p)*(u1(tx, ind_ypp_z)+u1(tx, ind_ymp_z)) &

+ dt2*dev_c1z(p)*(u1(tx, ind_y_zpp)+u1(tx, ind_y_zmp))

enddo

u2(tx, ind_y_z) = temp_u2

endif

Indexing variables 

into 2D arrays!



Kernel Comparisons

• On Tesla C1060,  Kernel2 gives 75% improvement 

over Kernel1. On FERMI, GTX 480, Kernel2 gives 30-

40% improvement over Kernel1

• For large problems, Kernel2 is roughly 60X faster than 

the CPU version. Kernel1 is roughly 40X faster. CPU 

on the test machine is NOT state of the art. Nor is the 

code particulalry good.

• Keep in mind, speedup is a loaded and hence 

“volatile” number. 

• A better assessment of performance would be to 

measure how close am I to peak theoretical  

performance in terms of 

• Memory bandwidth

• Block occupancy



Optimization 3

• Recall the keys to good performance : Memory coalescence and 

minimize reads/write to global memory!

• Addressed the first key via cudaMallocPitch. In 3D, 

cudaMalloc3D will achieve the same end.

• What else can be done here?
if (tx.gt.Nghost .and. tx.le.(Nx+Nghost)) then

dt2 = dt*dt

temp_u2 = -u0(tx, ind_y_z)+ (2.+dt2*dev_c0)*u1(tx, ind_y_z)

do p=1,Nghost

ind_ymp_z = ind_y_z-p

ind_ypp_z = ind_y_z+p

ind_y_zmp = ind_y_z-p*NyExt

ind_y_zpp = ind_y_z+p*NyExt

temp_u2 = temp_u2 &

+ dt2*dev_c1x(p)*(u1(tx+p, ind_y_z)+u1(tx-p, ind_y_z)) &

+ dt2*dev_c1y(p)*(u1(tx, ind_ypp_z)+u1(tx, ind_ymp_z)) &

+ dt2*dev_c1z(p)*(u1(tx, ind_y_zpp)+u1(tx, ind_y_zmp))

enddo

u2(tx, ind_y_z) = temp_u2

endif



Parallel Scalability via Grid of Thread Blocks

• Kernels are launched as Grid of thread blocks

• GPU executes multiple blocks concurrently

• No execution order defined for individual blocks

• Enables scalability without code rewrite

Shared 

Memory

Shared 

Memory

Shared 

Memory

Shared 

Memory

Shared 

Memory

Shared 

Memory

Shared 

Memory

Shared 

Memory

Shared 

Memory

Shared 

Memory

Shared 

Memory

Shared 

Memory

Shared 

Memory

Shared 

Memory

Shared 

Memory

Shared 

Memory

Grid of  8 blocks

Device processing 4 

blocks at the time

Device processing 2 

blocks at the time

Shared 

Memory

Shared 

Memory

Shared 

Memory

Shared 

Memory

Shared 

Memory

Shared 

Memory

Shared 

Memory

Shared 

Memory



CUDA “Device Architecture”

• GPU : collection of Streaming Multiprocessors (SM)
– Basically vector processors, 1 - 15 SM per GPU

• A block is executed on a single SM
– Multiple blocks execute on same SM concurrently, share resources

– No block migration

• Registers

• Shared Memory

• Global Memory

• Host access only

to global memory
Shared Memory

Registe

rs

Global Memory



CUDA Programming

• Basics for getting code to run on GPU:
– GPU Memory management

– GPU Kernel Launches

– Kernel design

• Special considerations
– Synchronization

– Error checking

• Debugging

• Optimization
– Will be covered in next session



Programming Languages for CUDA

• Native CUDA interface is C++ (used to be C)

• Fortran accessible in two ways:
– Mixed-language programming

– PGI compiler (more vendors are following)

• Fortran via Mixed Language
– Calling C functions from Fortran

– Watch out for calling conventions/name mangling 

– No (additional) vendor lock-in

• Portland Group (PGI) compiler
– CUDA Fortran interface

– Directive based GPU programming (high-level)

– Proprietary 



Memory Management

• CPU and GPU have separate memory spaces

• CPU is in charge of managing GPU memory
– allocate/free

– data transfer to/from GPU

• Physical addresses on GPU

• Memory allocation

float *devPtr;

cudaMalloc(&devPtr, 100);

cudaFree(devPtr);

real, allocatable, device :: v(:)

istat = cudaMalloc(v, 100)

istat = cudaFree(v)

• PGI declares memory location



Data Transfer between CPU and GPU

cudaMemcpy(void *dst, void *src, size_t nbytes, 

enum cudaMemcpyKind direction);

• direction specifies location of src and dst

cudaMemcpyHostToDevice, cudaMemcpyDeviceToHost,

cudaMemcpyHostToHost, cudaMemcpyDeviceToDevice

• Blocks CPU thread

• Does not start until kernel completed

• PGI Fortran does not require „direction‟

real, allocatable, device :: dst(1024)

real src(512)

istat = cudaMemcpy(dst, src, 512)



Kernels

• Kernel: Subroutine executed on the device

• Some restrictions
– Can only access GPU memory

– Non recursive, no optional arguments, no static data members

• Kernel defined via attribute (global)

attribute(global) subroutine sqrtKernel(n, a)

real, dimension(*) :: a

integer, value :: n

...

end subroutine sqrtKernel



Determining unique thread identifier

• Grid configuration can be 1D, 2D or 3D
– Both for blocks and threads 

– Simplifies operations on higher dimensional arrays

• Block and thread index structs
blockidx % x, threadidx % y, .. 

• Threads can compute their unique index
tid = (blockidx % x – 1) * blockdim % x +  threadidx % x 



Launching Kernels

• Called from CPU with thread grid configuration

call sqrtKernel<<<blockPerGrid, threadsPerBlock>>>(n, a)

• Grid dimensions
– Block per grid, Thread per blocks

– Can be scalar or three element

type(dim3) :: dimGrid, dimBlock

dimGrid = dim3(N/16, M/16, 1)

dimBlock = dim3(16, 16, 1)

call complexKernel<<< dimGrid, dimBlock >>> (n, u, v)



Example 1: Skeleton and Data Transfer

program main

use cudafor

integer ierr, i

real, device:: dst(20)

real src(10), res(10)

do i=1,10 src(i) = i

ierr = cudaMemcpy(dst, src, 10)

ierr = cudaMemcpy(res, dst, 10)

print *, res

end

PGI CUDA module

Allocation on GPU

Transfer to/from 

GPU



Example 1 (cont):  Kernel Launch

program main

use cudafor

integer ierr, i

real, device:: dst(20)

real src(10), res(10)

do i=1,10 src(i) = i

ierr = cudaMemcpy(dst, src, 10)

call sqrtKernel<<<1, 10>>>(10, dst)

ierr = cudaMemcpy(res, dst, 10)

print *, res

end

Launching the kernel, 
1 block, 10 threads per 

block



Example 1 (cont):  Kernel

attribute(global) subroutine sqrtKernel(n, a)

real, dimension(*) :: a

integer, value :: n

integer, value :: i

i = (blockidx%x – 1) * blockdim%x + threadidx%x

if( i <= n )  a(i) = sqrt( a(i) )

end subroutine sqrtKernel

program main

...  

call sqrtKernel<<<1, 10>>>(10, dst)

....

print *, res

end



Compiling CUDA Programs

• PGI / Fortran
– .cuf/.CUF extension to enable CUDA 

pgCUF test.cuf

– Selecting a specific CUDA version

pgCUF –ta=cuda2.3 test.cuf

pgCUF –ta=cc20 test.cuf

pgCUF –Mcuda=emu   test.CUF

• C/C++
– nvcc compiler wrapper, uses Visual C++/gcc under the hood

nvcc –arch=sm_20 test.c



Where is the GPU binary?

test.cuf

test.ptx Test.cuf



Box-Car Filter, Part 1

attribute(global) subroutine boxCar(n, in, out)

real, dimension(*) :: in

real, dimension(*) :: out

integer, value :: n, i

i = (blockidx%x – 1) * blockdim%x + threadidx%x

if( i > 1 and i < n ) then  

out(i) =  (in(i-1) + 2 * in(i) + in(i+1)) / 4. 

end if

end subroutine boxCar

Each thread 4 global 

memory accesses!



Shared Memory

• Limited amount of memory shared among all threads

in a block
– Some 16kB – 48 kB per multi-processor 

• Very fast access by threads
– Comparable to registers

• Explicitly sized 

real, shared, dimension(16) :: sharedMem

• Implicitly sized

real, shared, dimension(*) :: sharedMem

call sqrtKernel<<<1, 10, 16>>>(10, dst)



Box-Car Filter, Part 2

attribute(global) subroutine boxCar(n, in, out)

real, dimension(*) :: in

real, dimension(*) :: out

real, shared, dimension(*) :: tmp

integer, value :: n, i

i = (blockidx%x – 1) * blockdim%x + threadidx%x

tmp[i] = in[i]

if( i > 1 and i < n ) then   

out(i) = (tmp(i-1) + 2 * tmp(i) + tmp(i+1))/4

end if

end subroutine boxCar

Race Condition!

Possibly incorrect results



Thread Synchronization 

call syncthreads()

• Synchronizes all threads in a block
– No thread can pass this barrier until all other threads have 

reached it

– Necessary to avoid race conditions

• Careful when in conditional code!
– Requires all threads reach thread

• Does not affect threads in other blocks
– Cannot be used to synchronize between thread blocks

– Only synchronization mechanism between blocks are kernel 

launches



Box-Car Filter, Part 3

attribute(global) subroutine boxCar(n, in, out)

real, dimension(*) :: in

real, dimension(*) :: out

real, shared, dimension(*) :: tmp

integer, value :: n, i

i = (blockidx%x – 1) * blockdim%x + threadidx%x

tmp[i] = in[i]

call syncthreads()

if( i > 1 and i < n ) then   

out(i) = ( tmp(i-1) + 2*tmp(i) + tmp(i+1) )/4

end if

end subroutine boxCar



Determine Maximum in Array

• Multiple threads compete for (write) access to same 

memory location
– Other thread updates value we are updating

– Synchronization within the same block

– No mechanism if contention from different blocks

• Scan reduction
– Data parallel approach

– Can be hard to implement

• Atomic update
– Guaranteed Cannot be used to synchronize between thread 

blocks

– Only synchronization mechanism between blocks are kernel 

launches



Atomic Memory Operations

• Multiple threads compete for (write) access to same 

memory location
– Other thread updates value we are updating

– Synchronization within the same block

– No mechanism if contention from different blocks

• Scan reduction
– Data parallel approach

– Can be hard to implement

• Atomic update
– Guaranteed Cannot be used to synchronize between thread 

blocks

– Only synchronization mechanism between blocks are kernel 

launches



Shared memory

• Problem: Reverse all elements in a (small) array

attribute(global) subroutine reverseKernel(n, a)

real, dimension(*) :: a

integer, value :: n

integer, value :: i

i = (blockidx%x – 1) * blockdim%x + threadidx%x

if( i <= n )  a(i) = a(n - i)

end subroutine sqrtKernel



Thread synchronization and shared 

memory

• Problem: Reverse all elements in a (small) array

attribute(global) subroutine reverseKernel(n, a)

real, dimension(*) :: a

integer, value :: n

real, shared, dimension(*) :: 

integer, value :: i

i = (blockidx%x – 1) * blockdim%x + threadidx%x

if( i <= n )  a(i) = a(n - i)

end subroutine sqrtKernel



CUDA Software Environment



The Flipside: GPUs need regular memory access 
(but newer generation GPUs are getting less picky)

No problem on C1060 and newerIdeal access pattern



The future: Fermi introduces 

new level of flexibility
• Multiple kernels executed concurrently

– Better performance on kernels with low degree of parallelism

• Hardware managed L1, L2 caches
– Relaxes coalescing requirements 

• C++ support on device

• Enhanced atomic performance

• ECC for reliable scaling 



CUDA: Development Environment 

for NVIDIA GPUs

• Early GPGPU efforts heroic
– Graphics API (OpenGL, DirectX) no natural fit for scientific computing

• Compute Unified Device Architecture (http://www.nvidia.com/cuda)
– Supported on all modern NVIDIA GPUs (notebook GPUs, high-end GPUs, mobile devices)

– Co-Existence with OpenCL (OpenCL basically *IS* CUDA)

• Single Source for CPU and GPU
– Host code C or C++ 

– GPU code C(++) with extensions
• “Kernel” describes one thread

• Host invokes a collection of threads

– nvcc: NVIDIA cuda compiler 

• Runtime libraries
– Data transfer, kernel launch, ..

– BLAS, FFT libraries

• Simplified GPU development, but still “close to the metal”!

• NEXUS: Visual Studio plug-in for GPU development



IDL users/Data analysts (would like to) devote 

their time to more important things than 

developing (low level) code



• IDL (ITT Vis), MATLAB (Mathworks)
C, Fortran 

• Rich set of data parallel kernels

• Extensible with proprietary kernels

• Seamless integration into host language

• Explicit or implicit management of address spaces

• Interface to Tech-X‟ FastDL for multi-GPU/distributed memory processing

http://gpulib.txcorp.com 
(free for non-commercial use)

Messmer, Mullowney, Granger, “GPULib: GPU computing in High-Level Languages”, Computers in 
Science and Engineering, 10(5), 80, 2008.

GPULib:
High-Productivity GPU Computing



GPULib enables development of 

complex algorithms on GPUs

• Data objects on GPU represented as structure/object on CPU
– Contains size information, dimensionality and pointer to GPU memory

• GPULib provides a large set of vector operations
– Data transfer GPU/CPU, memory management

– Arithmetic, transcendental, logical functions

– Support for different types (float, double, complex, dcomplex)

– Data parallel primitives, reduction, masking (total, where)

– Array operations (reshaping, interpolation, range selection, type casting)

– NVIDIA‟s cuBLAS, cuFFT

• Extensible architecture
– Customized kernels 



An example of using 

GPULib in IDL

CPU
GPU

X

y

X_gpu

y_gpu

IDL> x_gpu = gpuPutArr(x)

IDL> y = gpuGetArr( y_gpu )

IDL> y_gpu = gpuSin( x_gpu ) 

Sin()
x_gpu

y_gpu

IDL> gpuinit

IDL> gpuFree, x_gpu, y_gpu



Just add „gpu‟ prefix to IDL 

commands ...

• Memory allocation on GPU 
y_gpu = gpuFltarr(100, 100)

• Data transfer
x_gpu = gpuPutArr(x)

• Binary operators both plain and affine transform 

z_gpu = gpuAdd(x_gpu, y_gpu)

z_gpu = gpuExp(a, b, x_gpu, c, d)

• IDL intrinsics
gpuInterpolate, gpuTotal, gpuCongrid, gpuSubArr, 
gpuReform, gpuWhere, gpuRandomu, gpuFltarr, gpuComplex, 
gpuMatrix_multiply … 

• IDL structure contains all information about GPU object

type, n_elements, n_dimensions, dimensions, handle

• Major changes with IDL 8



Comparison of different vector 

implementations

Vector length

z = a exp(b x + c) + d

z = x + y

GeForce 9300M GS: 16 cores, 9GB/s

Tesla C1060: 240 cores, 102GB/s 

CPU: 2.4GHz Core2Duo E4600

9 GB/s

102 GB/s

16 GB/s



Kernel Execution Time on Compute 

Bound Problem, y = exp(x)



Kernel Execution Time on Memory 

Bandwidth Limited Problem, z = x + y



Key to performance: Multiple kernel 

invocations per CPU-GPU transfer

Vector length

Vector length

Kernel only

Single invocation

10 invocations

x+y

Sin(x)

ax+by+c

lgamma(x)

exp(x)



GPULib offers different interfaces 

for different needs

• Plain IDL:
rho = Sqrt(x * x + y * y)

• Procedural interface with explicit memory management:
tmp1 = gpuMake_array(…) 

tmp2 = gpuMake_array(…) 

rho = gpuMake_array(…) 

gpuMult, x, x, tmp1 

gpuMult, y, y, tmp2 

gpuAdd, tmp1, tmp2, tmp1 

gpuSqrt, tmp1, rho 

gpuFree, tmp1 

gpuFree, tmp2 

• Functional interface with simplified memory management
rho = gpuSqrt(gpuAdd(gpuMult(x, x), $

gpuMult(y, y)) 

• Since IDL 8.0: Operator overloading

rho = gpuSqrt(x * x + y * y) 

144.8s

7.2s

15.3s

15.4s



GPULib‟s Extensible Architecture

GPULib functions

GPU

Vector 

Arithmetic

NVIDIA functions

cuBLAS cuFFT

Data 

Manipula-

tion

Complex

Operations

CUDA

Runtime 

API

GPULib wrappers 

(language specific, includes software emulator)

GPULib Host Language Interface (IDL, MATLAB)

Custom 

Kernels

V
H

L
L

C
U

D
A

, 
C



Tech-X GPU Consulting

• Tech-X supports clients throughout entire project life-cycle

– Problem definition
• Performance analysis

• Algorithm Review

– Implementation and optimization
• Parallelization (MPI, OpenMP)

• GPULib implementation

• CUDA implementation

– Data analysis and knowledge discovery
• Large-Volume data analysis

• High-end and autostereoscopic visualization

• Workflow optimization

• GPU consulting clients involve Industry, Government and Academia
– Computational finance

– Ray-tracing

– Optimization of constraint solver

– Particle-based solvers

– Computational fluid dynamics

– ...



A typical Consulting Example: GPU 

acceleration of MATLAB Ray-Tracing Code

• Performance analysis revealed bottleneck in solution of small 
matrices

• Tech-X‟ mathematicians discovered that linear system was reducible 
to explicit form

– Order of magnitude speedup by algorithmic changes

• Rapid prototyping of GPU acceleration via GPULib
– Demonstration of benefit of GPUs

• Implementation of dedicated CUDA kernel
– Ultimate performance

• Overall speedup ~ 1000x compared to original implementation

=> Result of comprehensive analysis, rather than just code translation
– Tech-X scientific staff  with broad domain expertise a huge asset



P = Parallelizable part of the code

(1-P) = Serial part of the code

Parallel speedup (Amdahl)

Maximum achievable speedup:  

• use „optimizable‟ part

O = Part of code that benefits from optimization

(1-O) = Part that does not benefit from optimization

Speedup achieved by optimization by factor :

Maximum achievable speedup

In order to get a significant speedup, O has to be a very large fraction of the 
overall time

Measure, Think, Code .... (Repeat)

Amdahl‟s Law, the key to successful optimization





Image Deconvolution

• Image is convolved with detector point-spread function:

• Clean image by (complex) division in Fourier space:

• Speedup ranging from 5x – 28x 
for 256x256 – 3kx3k images

gpu_img = gpuFFT(img)

gpu_img = gpuDiv(gpu_img, gpu_psf)

gpu_clean = gpuFFT(gpu_img_fft, /INVERSE)

clean = gpuGetArr(gpu_clean)

dudvvuPvyuxIyxI trueobs ),(),(),(

))(/)((),( 1 PFFTIFFTFFTyxI obstrue





A GPULib-based Range-Azimuth 

Processor

Host->Device

transfer
Range FFT

Range 

Compression

Range IFFT

Corner Turn

Azimuth FFT

Azimuth 

Compression

Azimuth IFFT
Device->Host

transfer

CPU GPU

Range FFT

Range 

Compression

Range IFFT

Corner Turn

Azimuth FFT

Azimuth 

Compression

Azimuth IFFT

CPU GPU



A
z
im

u
th

 

C
o
m

p
re

s
s
io

n

D
a
ta

 

tr
a
n

s
fe

r

D
a
ta

 

A
llo

c
a

ti
o

n

A GPULib-based Range-Azimuth 

Processor

y_gpu = gputranspose(x_gpu)

y_gpu = gpuFFt(y_gpu, LHS=y_gpu, /batch, 
plan=plan_forward, /destroy)

for i=0,nsample-1 do begin 
gpuView, y_gpu, npulse*i, npulse, 

y_gpu_view
gpuMult, y_gpu_view, g_func2, 

y_gpu_view, error=err
end

y_gpu = gpuFFt(y_gpu, LHS=y_gpu, /batch, 
/INVERSE, plan=plan_inverse, /destroy)

gpugetarr, y_gpu, d

R
a
n

g
e

 

C
o
m

p
re

s
s
io

n

gpuinit

d = gpuMallocHost(nsample * npulse,  6L)
d[0:*] = data
x_gpu = gpuComplexarr(nsample, npulse)

g_func1= gpuPutArr(func1)
gpuPutArr, d, x_gpu
x_gpu.n_dimensions = 2   
x_gpu.dimensions = [nsample, npulse] 

x_gpu = gpuFFt(x_gpu, LHS=x_gpu, /batch, 
plan=plan_forward, /destroy)

for i=0,npulse-1 do begin 
gpuView, x_gpu, nsample*i, nsample, 

x_gpu_view
gpuMult, x_gpu_view, g_func1, 

x_gpu_view, error=err
end

x_gpu = gpuFFt(x_gpu, LHS=x_gpu, /batch, 
/INVERSE, /destroy)



GPULib acceleration of 

Range-Azimuth processor

20000x6500 range-azimuth dataset

(single precision complex)

CPU
(2.4 GHz Core2Duo E4600)

CPU+GPU
(2.4 GHz Core2Duo E4600 + Tesla C1060)



Detailed profile of GPULib accelerated range-

azimuth processor reveals room for improvement

26880x4912 range-azimuth dataset

Azimuth Compression

Problem: Large number of kernel invocations

on fairly short vectors

Solution: Specialized kernel

Range Compression

Problem: Smaller number of kernel invocations

on relatively long vectors

Solution: Specialized kernel

Data Transfer

Problem: Currently using blocking transfer

Solution: Asynchronous transfer for latency hiding





C
h
a

n
n

e
l

n
o

rm

D
o
t 

p
ro

d
u

c
ts

A GPULib-based Range-Azimuth 

Processor

N
o
rm

a
liz

a
ti
o

n

For i=0, nlines – 1 do begin
res[*, *, i] = 

matrix_multiply(ref, a[*,*,i], /a)
end

a = reform(a, nbands, nsample*nlines)
r = sqrt(total(a^2, 1))
r = reform(r, nsamples * nlines) 

res = reform(res, nref, nsamples *nlines)
res = transpose(res)
for i = 0, nref do 

res [ *, i] /= r 

*
Ref. 

spectra



Spectral Angle Mapping on GPU

0
10
20
30
40
50
60
70
80
90

T
im

e
 [

s
]

224 Channels, 614 Samples, 512 Lines, 
500 reference spectra

Normalization

Mapping

Transfer

CPU

GPU



• SAM significantly accelerated compared to 
CPU

• > 20x speedup overall 

• Mapping a single kernel
• SGEMM 

• Normalization a collection of kernels 

• Norm, sqrt, division, ... 

• Data transfer significant part of cost
• Increase to 3 GB/s from 1.5 GB/s by using page-

locked memory

• Asynchronous data transfers to the rescues

• Consider entire application, not just 
isolated kernels!

• Entire flow from disk -> host memory -> GPU and 
back

GPU SAM dominated by data transfer cost

Transfer

Mapping

Normalization

224 Channels, 614 Samples, 

512 Lines,  500 reference spectra

224 Channels, 614 Samples, 

1000 Lines,  500 reference spectra





• Large ensemble of 1D diffusion 
equations

• Tri- or pentadiagnoal matrices 
(sparse!)

• 360,000 systems with 100 – 300 
unknowns

• Reference implementation in 

MATLAB

• Tech-X Custom kernel

N=300: 182s CPU -> 1.6s GPU

N=100:   45s CPU -> 0.7s GPU

GPU acceleration of Option Pricing
(solving lots of small 1D diffusion equations)

N = 100

N=300
0

20

40

60

80

100

120

140

160

180

200

CPU
GPU 

(incl.transfer) GPU (excl. 
transfer)

N = 100

N=300



M
a

in
 i
te

ra
ti
o

n
s

D
a
ta

 A
llo

c
a

ti
o

n
In

it
ia

liz
a

ti
o

n

A GPULib-based Conjugate-Gradient 

Solver

N
o
rm

 i
n
it

A = single(A);
b = single(b);

[n, m] = size(A);

gpuInit()

aGpu = gpuZeros([n,m],'single');
bGpu = gpuZeros([n,1],'single');
rGpu = gpuZeros([n,1],'single');
pGpu = gpuZeros([n,1],'single');
qGpu = gpuZeros([n,1],'single');
xGpu = gpuZeros([m,1],'single');

gpuSet(aGpu,A); gpuSet(bGpu,b);
gpuSet(pGpu,b); gpuSet(rGpu,b);

normB = sqrt(gpuDot(bGpu,bGpu)); 
normR = sqrt(gpuDot(rGpu,rGpu)); 

nu = normR^2; 

for k=1:maxiter

relErr = normR/normB;

if(relErr < tol)
x = gpuGet(xGpu);
return;

end   

qGpu = gpuMatVecMultiply(aGpu,pGpu); 

mu     = gpuDot(pGpu, qGpu);

alpha  = nu / mu;

xGpu = gpuPlusAT(single(1.0), xGpu,  
alpha, pGpu, single(0.0));

rGpu = gpuPlusAT(single(1.0), rGpu, -
alpha, qGpu, single(0.0));

nuP = gpuDot(rGpu,rGpu);
beta   = nuP / nu;

pGpu = gpuPlusAT(single(1.0),rGpu, 
beta, pGpu, single(0.0));

nu    = nuP;

normR = sqrt(nuP); 

end

BiCGStab, random 

hermitian matrix

122s -> 1.3s 

on Tesla C1060





0 .0 0 0 .0 1 0 .10 1.0 0 10 .0 0 10 0 .0 0

0

1 0 0

20 0

3 0 0

40 0

5 0 0

S ing le  Pre c is io n

D o ub le  Pre c is io n

D o m a in  s iz e  [MC e lls ]

U
p

d
a

t
e

 R
a

t
e

 [
M

c
e

ll
s

/s
]

3D FDTD in GPULib

• Widely used for solving time-dependent Maxwell‟s equations

•

• 3D FDTD
– Cut-Cell or stair-stepped boundaries
– Uses VORPAL geometry output

• Performance 
– Up to 400 Mcells/s on

• ~70% theoretical memory bandwidth
– ~10 Mcells/s on CPU

~ 40-50x speedup compared to CPU based 
implementation

– Comparable to ~48 Franklin cores

• Double precision hit only due to memory
bandwidth
– Think about your units!

• Multi-GPU via message passing among GPU accelerated nodes
– Eg. 2.6x speedup on a 3 GPU „cluster‟ (PSC)

• Now part of VORPAL (ongoing)

Ex

Ex

Ey Ey

Bz

=





Oxygen: Tech-X‟ Production cluster with 

GPU accelerated nodes

• 32 nodes, each with dual quad core Opteron

• 8GB RAM per node

• Infiniband interconnect

• Lustre file system

• 4 nodes accelerated with 2 Tesla GPU blades



Benefit of GPUs not limited to FDTD:

Boundary Element Methods

– Large systems of linear equations
• O(100k)-O(1M) unknowns or larger

- Large matrices
- 100k unknowns:  80 GB

- 1M unknowns:  8 TB

- Direct or iterative method
- LU for dense systems, reuse for different RHS

- Iterative possibly faster for single solution

- Too large to fit into memory of

small cluster

- Solution time scales with O(N3)
- Interesting problems take days to weeks

need fast parallel out-of-core solvers

Use GPUs as low-cost accelerators

0

1

2

3

0

1



0

2

4

6

8

10

12

10000 20000 40000

G
P

U
 v

s
 C

P
U

 S
p

e
e

d
u

p

GPU vs CPU Speedup
for 8 way parallel OOC LU 

decomposition

GPUs can significantly accelerate out-of-

core LU decompositions

• Based on 

Azevedo/Dongarra OOC 

solver

Single precision, real



Summary/Conclusions

• GPUs offer large potential for accelerating scientific applications

• CUDA significantly simplifies code development
– Still requires understanding of hardware

• GPULib enables GPU development from within VHLLs
– Provides large set of vector operations with unified interface

– Enables rapid development of GPU accelerated algorithms

– No hardware knowledge required

• GPUs yields ~10x-40x speedup compared to CPU

• Fermi a big leap forward, both in performance and usability
(to be released Q1/Q2 2010)

• Tech-X offers custom kernel development for maximum performance







GPULib Related Projects at Tech-X 

• FastDL – cluster computing in IDL  (task farming and MPI)

• RDL – Remote Data Access via OpenDAP

• High-Performance/GPU computing in Space

• Parallel GPU accelerated dense linear solvers

• Radar/SAR processing on GPUs



• Processing large numbers of independent data sets, processing 

pipelines

– Task-Farming (incl. dependencies) on clusters

• Process largest scale data sets

– Domain decomposition on distributed memory 

architectures 

• Processing takes too long on single box

– Accelerator hardware (e.g. GPU)

Tech-X offers different tools for different HPC 

problems



mpiDL: Code example

pro mpidl_demo

myrank = MPIDL_Comm_rank()                        ; get processor id        

nprocs = MPIDL_Comm_size()                     ; get number of processors  

if myrank eq 0 then begin ; task for processor 0

for i = 1, nprocs-1 do  begin 

message = MPIDL_Recv(count=1, source=i) ; receive messages

print, “Node   “, i, “ sends “,  message ; display the message

end

end else begin

sendbuf = myrank ; build message to send

MPIDL_Send, sendbuf, dest = 0 ; send this message to processor 0

end

end

N=2000

N=500

•Example: Full N2 gravitational problem

•Each processor computes force on subset 

of particles

•Broadcasts forces to other processors



template <unsigned int blockSize>
__global__ void reduce6(int *g_idata, int *g_odata, unsigned int n)
{

extern __shared__ int sdata[];
unsigned int tid = threadIdx.x;
unsigned int i = blockIdx.x*(blockSize*2) + tid;
unsigned int gridSize = blockSize*2*gridDim.x;
sdata[tid] = 0;
while (i < n) { sdata[tid] += g_idata[i] + g_idata[i+blockSize]; i += gridSize; }
__syncthreads();

if (blockSize >= 512) { if (tid < 256) { sdata[tid] += sdata[tid + 256]; } __syncthreads(); }
if (blockSize >= 256) { if (tid < 128) { sdata[tid] += sdata[tid + 128]; } __syncthreads(); }
if (blockSize >= 128) { if (tid < 64) { sdata[tid] += sdata[tid + 64]; } __syncthreads(); }

if (tid < 32) {
if (blockSize >= 64) sdata[tid] += sdata[tid + 32];
if (blockSize >= 32) sdata[tid] += sdata[tid + 16];
if (blockSize >= 16) sdata[tid] += sdata[tid + 8];
if (blockSize >= 8) sdata[tid] += sdata[tid + 4];
if (blockSize >= 4) sdata[tid] += sdata[tid + 2];
if (blockSize >= 2) sdata[tid] += sdata[tid + 1];

}
if (tid == 0) g_odata[blockIdx.x] = sdata[0];

}

Manual loop unrolling

Goal: Compute a vector of partial 

sums for a given vector

Writing optimized CUDA code can be 

painful



Remote Data Toolkit

• Works with open 

standard DAP 

(Data Access 

Protocol)

• IDL Command 

line or GUI 

interface

Funded by NASA SBIR Grant NNX08CA99P



• Particle nature of plasma important
– E.g. non-thermal phase-space distributions

• Particle-particle interaction too time consuming
– Compute Coulomb forces between particles

– Computationally too demanding
• O(N2) algorithm

– Some projects may require it 
• Molecular dynamics

• Particle-in-cell algorithm
– Particles: anywhere 

– Fields: discretized in space

– Particle only interact with fields
• Collective effects correct

– O(N) algorithm -> Feasible!

Kinetic Plasma Models



Particle-in-cell algorithm (PIC)

• Field equations

– Initially known:

• Solution to Poisson‟s equation, E = 

• B-field divergence-free, B = 0

– Dynamic Maxwell equations: 

• dE/dt =   x B - J

• dB/dt = - x E

• Particle equations

– Newton-Lorentz:

• dv/dt = (q/m)(E - v x B)

• Coupling fields-particles via current

– Determined by particle motion

– Only dynamics equations need to be solved

– Time-staggered leap frog

• Self-consistent!

B

E

F

v

x

J



FPGA – Field Programmable Gate Arrays 
Configurable matrix of logic and routes .. Yet another accelerator

Logic/routes configured via 

configuration file (bit-stream)Xilinx Virtex-II Pro FPGA

Power PC cores
(not used here)

Logic cells

(Multipliers, Memory, 

Look-up tables, shift registers,.. )

Main question: How to generate bit-streams??

Routes

Unconfigured 

logic cells

Configured 

logic cells



Examples of cut-cell FDTD 

simulations

Ex



Ex

Ey

Ex

Ex



VORPAL modeling of RF coupling into 

ECRIS plasma

v
p
e
rp

vpar

T0 T1

Electron density in ECRIS 

exhibits sextupole field Device geometry with 

extraction optics and mag. 

bottlle configuration
Resonant absorption 

of RF waves by electrons



Single vs. dual frequency heating

• Plane wave TE11 excitation from one end.

• Dual frequency shows 5 GHz beat

• Diagnostic of electron impact on surface 

28 GHz

18 & 28 GHz

Smithe_ICIS_Movies/Esurface.avi


VORPAL‟s atomic physics model enable 

investigations of ionization cascade

Distribution of 

O, O+, O2+, O3+

T0

T1

T2

Loading in center of Mag bottle

Loading close to bottle necks



• Problem 1: Simulation output volume

• Problem 2: Simulation output location

• Solution 1: Parallelism for analysis/redution

– Use parallelism for data analysis/reduction

not only for actual simulation

• Solution 2: Abandon remote X

– No support for local accelerator hardware

– Sometimes fairly chatty

• VisIT (Lawrence Livermore Lab) addresses both!
– Parallel back-engine generates 3D primitives

– Client-server architecture

– Client can take advantage of 3D accelerator hardware

– Output to high-end ray-tracers (eg Povray)

• Tech-X simulation output targets VisIT
– Collaboration with VisIT developers to simplify basic viz.

– Meta-information according to VizSchema

Remote/Parallel Visualization



• Broad range of plasma and EM models

• Particle-in-cell, Boltzmann fluid, Euler fluids

• Cut-cell algorithms for accurate electromagnetics in complex geometries

• Runs on largest-scale parallel supercomputers

• Routinely on > 30,000 node concurrently 

• Broad library of atomic physics, surface physics

• Sputtering, secondary emission, 

• Ionization, recombination, nuclear reactions

• Widely used in government, industry and academia (all projects below 

with involvement of Tech-X personnel)

• High-energy physics: Laser Wakefield Accelerators

• Aerospace: Plasma engines, dielectric barrier discharges

• Photonics: Bandgap structures, meta-materials

• Surface interaction: Multi-pactoring, electron cloud effects

• High-Power Microwave: Cavity optimization, Magnetrons, Gyrotrons

• Semi-conductor manufacturing: Surface deposition reactors

• Ion sources: Electron cyclotron resonance ion sources 

• High energy-density physics: laser fusion, inertial confinement fusion (ICF)

Tech-X Products 
VORPAL: Plasma and EM modeling 

framework



GPULib in ENVI: Principal Component 

Analysis

t =3s

Principal 

Component 

Analysis 

(PCA)

Data courtesy of

Dr. Mort Canty, 

FZ Juelich, Germany

http://fwenvi-idl.blogspot.com/



Example: Database search

• Find closest match in 500k words with 128 characters each
• Less than 10ms
• CPU: ~200 ms

• GPULib 1: 500k dot-products
– Need test vector on GPU
– Vectors short
– Huge number of kernel invocations 
=> Bad idea

• GPULib 2: 128 accumulations
– No need to transfer entire vector
– Large vectors
– Smaller number of kernel invocations
=> ~27 ms

• Hand crafted implementation
– Transfer data to GPU
– Perform 128 dot products concurrently
=>   < 8 ms (Tesla 8-series GPU)

500k

500k

500k



GPULib example: Simulation

Data courtesy of

Dr. Matthias Gutmann,

Rutherford Appleton 

Research Lab, UK

Neutron scattering experiment

Use simulation written in IDL

to compute location of 

scattering maxima

(Bragg peaks)


