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Global S-wave Tomography

Seismic heterogeneity increases from the mid-mantle 
towards the core-mantle boundary
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Seismic heterogeneity increases from the mid-mantle 
towards the core-mantle boundary

dln vs [%]

Tomography is not WYSIWYG

what you see is what you get

Global S-wave Tomography
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1) From Physical Geology Exploring the Earth 4th Edition, James S. Monroe, 
Reed Wicander, Center Michigan University, brooks/cole 

2) http://www.seismology.harvard.edu/~boschi/whole_earth/inner_core_1.gif
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Limited Resolution! Non-Uniqueness

Trade-off:
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S-wave velocity anomalies from tomography
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Root-Mean-Square Profiles of Seismic Heterogeneity
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Spherical Harmonics Degree l    dln vs [%] Spherical Harmonics Degree l     dln vs [%]
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Statistics for Tomographic Models - Spectral Power
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Statistics for Tomographic Models - Spectral Power
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Statistics for Tomographic Models - Histograms



Histograms of 
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Statistics for Tomographic Models - Histograms



-2-4 0 2 4
dln vs [ % ]

Tomography
S20RTS

PRI-S05HMSL-S06

TX2007

1 2 3 4
log10 (number of grid points)

Histograms of 
heterogeneity

as a function of depth

-4

4

3

2

1

0

log10 (#)

Variation with respect to the mean

Schuberth et al., 2009a22

Statistics for Tomographic Models - Histograms



Tomography
S20RTS

PRI-S05HMSL-S06
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The slow anomalies in 
the lowermost mantle are 
revealed by an increased 
width of the negative side 
lobe

i.e. histograms have 
negative skew
see also Yanagisawa & Hamano 1999

Histograms of 
heterogeneity

as a function of depth
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Statistics for Tomographic Models - Histograms



Tomography
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Temperature alone?

Hypothesis

Schuberth et al., 2009a25

Seismic anomalies

Statistics for Tomographic Models - Histograms



 

High Heat Flux   ~ 10 TW
30 % of the total mantle heat budget 

(classically 2-3 TW)

High CMB temperature ~ 4000 K

A large thermal gradient in D” > 1000 K

Power requirements of the dynamo
e.g., Glatzmaier & Roberts 1995, Kuang & Bloxham 1997, and many others

Thermal history of the core
e.g., Buffett 2002, Nimmo 2004, Labrosse 2003

Heat conduction along the core adiabat
e.g., Gubbins et al. 2001

High core and CMB temperature from High-P-T exp. and simulations
e.g., Boehler 2000, Steinle-Neumann et al. 2001, Alfé et al. 2002/2007

Seismological Studies of the D” region
e.g., v. d. Hilst et al. 2007

Mantle subadiabaticity and low plume excess temperature in UM
e.g., Bunge et al. 2001, Sleep 2004, Bunge 2005

Large Temperature Variations in the Deep Mantle
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Parallel finite element code 
TERRA 

Equations of motions in a
3-D spherical shell

Mass, momentum and energy 
balance at

infinite Prandtl number

Anelastic liquid approximation
→ compressible

Schuberth et al., 2009a

Mantle Circulation Modeling (MCM)

dT Isosurfaces
+400 K (upwellings)
 -600 K (downwellings)
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High numerical resolution
80 million grid points, 25 km grid spacing throughout the mantle 

Mantle Circulation Models - Key Parameters
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High numerical resolution
80 million grid points, 25 km grid spacing throughout the mantle 

Simple 3-layer viscosity profile
 1023, 1021, 1023 Pas in the lithosphere, upper & lower mantle, respectively 
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Mantle Circulation Models - Key Parameters



High numerical resolution
80 million grid points, 25 km grid spacing throughout the mantle 

Simple 3-layer viscosity profile
 1023, 1021, 1023 Pas in the lithosphere, upper & lower mantle, respectively

Low CMB temperature (standard case) + High CMB temperature (4200 K) 
large thermal gradient across CMB

high core heat flux (as high as 12 TW) 
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Mantle Circulation Models - Key Parameters



High numerical resolution
80 million grid points, 25 km grid spacing throughout the mantle 

Simple 3-layer viscosity profile
 1023, 1021, 1023 Pas in the lithosphere, upper & lower mantle, respectively

Low CMB temperature (standard case) + High CMB temperature (4200 K)

large thermal gradient across CMB

high core heat flux (as high as 12 TW) 

Petrology to link temperature to seismic velocities
Equilibrium phase assemblages by Gibbs Free Energy minimization

e.g, Ricard et al. 2005, Stixrude & Lithgow-Bertelloni 2005/2007, Piazzoni et al. 2007

thermodynamically self-consistent 
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Mantle Mineralogy and 1-D Seismic Profiles

http://eaps.mit.edu/faculty/shim/ImageGallery/images/Shim_Earth_Structure.png
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Depth

http://eaps.mit.edu/faculty/shim/ImageGallery/images/Shim_Earth_Structure.png
http://eaps.mit.edu/faculty/shim/ImageGallery/images/Shim_Earth_Structure.png


Influence of Temperature on the Physical Properties of Minerals

• Most important effect
Change in volume (density)

• Moduli co-vary with density 
Dependent on whether density 
is altered by pressure or 
temperature

• Microscopic picture
Lower density means weaker 
bonds and smaller moduli
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Hot

Cold

Influence of Temperature on Phase Stability
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Hot

Cold

Influence of Temperature on Mantle Discontinuities

410 km

660 km



Hirose 2002

1600 °C
2000 °C

Phase diagram is strongly temperature dependent
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Influence of Temperature on Phase Assemblage



Influence of Phase Transitions on Seismic Heterogeneity
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e.g., Stixrude & Lithgow-Bertelloni 2005, Piazzoni et al. 2007

• Equilibrium phase assemblages
– Gibbs free energy minimization

• Different equations of state (EOS)
– pressure: 3rd order Birch-Murnaghan
– temperature: Debye Mie Grüneisen or polynomial  

• Database from lab. + num. experiments
– EOS parameters at various P-V-T conditions
– Enthalpy and entropy of formation

Phase diagram varies with temperature

T [K]

Pyrolite

Thermodynamic Mineralogical Models
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Isosurface at +40042

Temperature



Isosurface at +40043

S-wave velocity



Isosurface at +40044

Temperature



Isosurface at +40045

S-wave velocity



Stixrude et al. (2007)  EPSL
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Influence of Phase Transitions on Seismic Heterogeneity
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Influence of Phase Transitions on Seismic Heterogeneity
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Lateral Variations at the Discontinuities

Very Slow

Very Fast
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Spectral Power of Heterogeneity

Spherical Harmonics Degree l      dT [ K ]

Schuberth et al., 2009a50

Temperature

Spherical Harmonics Degree l      dT [ K ]

High CMB Temperature — 4200 K



Spectral Power of Heterogeneity

Shear velocity

Spherical Harmonics Degree l      dT [ K ] Spherical Harmonics Degree l    dln vs [%]
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Temperature

Spherical Harmonics Degree l      dT [ K ] Spherical Harmonics Degree l      dln vs [%]

High CMB Temperature — 4200 K



Tomography MCM
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Low CMB
Temp.

High CMB
Temp.

Magnitudes of Heterogeneity — Histograms 

Schuberth et al., 2009a

dT of >1000 K

1 2 3 4
log10 (number of grid points)

MCM 
Shear Velocity Anomalies
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Magnitudes of Heterogeneity — Histograms 

Schuberth et al., 2009a
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Tomography
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Different
Resolution?
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Tomographically
Filtered MCM

Rmt = m’ 

Tomographic Filtering of Flow Models
Original MCM S20RTS
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Tomographically
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Low CMB Temp.
corrected for resolution effects

High CMB Temp.
corrected for resolution effects
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Root-Mean-Square Profiles After Tomographic Filtering

S20RTS

Schuberth et al., 2009b62



Low T-CMB

High T-CMB

S20RTS

Root-Mean-Square Profiles After Tomographic Filtering

RMS profiles match well for models with high CMB temperature
especially in the deep mantle

Schuberth et al., 2009b63



The characteristics of a model show large differences between temperature 
and seismic velocities, especially in the upper mantle and transition zone

This difference is due to mantle mineralogy which shows a complex set of 
phase transformations in the transition zone 

A large thermal gradient across the CMB in isochemical whole mantle flow 
seems compatible with the magnitude and lateral gradients of the elastic 

structure as seen by seismology

This may have implications for the possible contribution of chemical 
heterogeneity

Conclusions
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Seismic tomography provides detailed images of Earth’s elastic structure, but 
we face problems in the interpretation

High resolution mantle circulation modeling allows for the prediction of 
temperature variations with realistic magnitudes

Quantitative testing of geodynamic predictions against tomography
mantle circulation models + thermodynamic models of mantle mineralogy

Consistent tests only possible if limited tomographic resolution is taken into 
account

The magnitude of lateral variations in thermal and elastic structure                                   
are a powerful diagnostic for studying deep earth dynamics

We need reliable information on magnitude of heterogeneity in the 
Earth from tomography!

Summary
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Thank You For Your Attention!
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