

The Importance of Mineral Physics for the Geodynamic Interpretation of Seismic Tomography

1st QUEST Workshop Capo Caccia

B. Schuberth

UMR GéoAzur, Sophia Antipolis, France

In collaboration with: H.-P. Bunge, G. Nolet, G. Steinle-Neumann, J. Ritsema, L. Stixrude, J. Oeser, C. Moder, K. Schaber, M. Mohr, A. Horbach, A. Piazzoni

Global S-wave Tomography

Global S-wave Tomography

3-D Elastic Structure

3-D high-resolution mantle circulation modeling Control on thermal fields

Global S-wave Tomography

Root-Mean-Square Profiles of Seismic Heterogeneity

Statistics for Tomographic Models - Spectral Power

Statistics for Tomographic Models - Spectral Power

Histograms of heterogeneity

22

Schuberth et al., 2009a

Histograms of heterogeneity as a function of depth

The slow anomalies in the lowermost mantle are revealed by an increased width of the negative side lobe

i.e. histograms have negative skew

see also Yanagisawa & Hamano 1999

25

Temperature alone?

Hypothesis

Large Temperature Variations in the Deep Mantle

High Heat Flux ~ 10 TW

30 % of the total mantle heat budget (classically 2-3 TW)

High CMB temperature ~ 4000 K

A large thermal gradient in D" > 1000 K

Power requirements of the dynamo

e.g., Glatzmaier & Roberts 1995, Kuang & Bloxham 1997, and many others

Thermal history of the core

e.g., Buffett 2002, Nimmo 2004, Labrosse 2003

Heat conduction along the core adiabat

e.g., Gubbins et al. 2001

High core and CMB temperature from High-P-T exp. and simulations

e.g., Boehler 2000, Steinle-Neumann et al. 2001, Alfé et al. 2002/2007

Seismological Studies of the D" region

e.g., v. d. Hilst et al. 2007

Mantle subadiabaticity and low plume excess temperature in UM

e.g., Bunge et al. 2001, Sleep 2004, Bunge 2005

Mantle Circulation Modeling (MCM)

Parallel finite element code TERRA

Equations of motions in a 3-D spherical shell

Mass, momentum and energy balance at infinite Prandtl number

Anelastic liquid approximation \rightarrow compressible

dT Isosurfaces +400 K (upwellings) -600 K (downwellings)

Mantle Circulation Models - Key Parameters

High numerical resolution

80 million grid points, 25 km grid spacing throughout the mantle

Mantle Circulation Models - Key Parameters

High numerical resolution

80 million grid points, 25 km grid spacing throughout the mantle

Simple 3-layer viscosity profile

10²³, 10²¹, 10²³ Pas in the lithosphere, upper & lower mantle, respectively

Mantle Circulation Models - Key Parameters

High numerical resolution

80 million grid points, 25 km grid spacing throughout the mantle

Simple 3-layer viscosity profile

10²³, 10²¹, 10²³ Pas in the lithosphere, upper & lower mantle, respectively

Low CMB temperature (standard case) + High CMB temperature (4200 K)

- large thermal gradient across CMB
- high core heat flux (as high as 12 TW)

High numerical resolution

80 million grid points, 25 km grid spacing throughout the mantle

Simple 3-layer viscosity profile

10²³, 10²¹, 10²³ Pas in the lithosphere, upper & lower mantle, respectively

Low CMB temperature (standard case) + High CMB temperature (4200 K)

- large thermal gradient across CMB
- **high** core heat flux (as high as 12 TW)

Petrology to link temperature to seismic velocities

Equilibrium phase assemblages by **Gibbs Free Energy minimization** *e.g, Ricard et al. 2005, Stixrude & Lithgow-Bertelloni 2005/2007, Piazzoni et al. 2007*

thermodynamically self-consistent

Mantle Mineralogy and 1-D Seismic Profiles

http://eaps.mit.edu/faculty/shim/ImageGallery/images/Shim_Earth_Structure.png

Influence of Temperature on the Physical Properties of Minerals

- Most important effect Change in volume (density)
- Moduli co-vary with density Dependent on whether density is altered by pressure or temperature
- Microscopic picture Lower density means weaker bonds and smaller moduli

Influence of Temperature on Phase Stability

Influence of Temperature on Mantle Discontinuities

Phase diagram is strongly temperature dependent

Hirose 2002

Thermodynamic Mineralogical Models

e.g., Stixrude & Lithgow-Bertelloni 2005, Piazzoni et al. 2007

- Equilibrium phase assemblages
 - Gibbs free energy minimization
- Different equations of state (EOS)
 - pressure: 3rd order Birch-Murnaghan
 - temperature: Debye Mie Grüneisen or polynomial
- Database from lab. + num. experiments
 - EOS parameters at various P-V-T conditions
 - Enthalpy and entropy of formation

Thermodynamic Mineralogical Models

• Density, bulk and shear moduli for bulk rock at all P-T conditions of the mantle again through EOS

Isosurface at +400

S-wave velocity

Stixrude et al. (2007) EPSL

Lateral Variations at the Discontinuities

Spectral Power of Heterogeneity

High CMB Temperature — 4200 K

0 Depth [km] 1200 2890 10 20 350 700 5 15 0 Spherical Harmonics Degree I dT[K] $\log_{10} (\sigma_l)$ -2.5 -2 -1.5 -1

Temperature

Spectral Power of Heterogeneity

High CMB Temperature — 4200 K

Temperature

Shear velocity

Statistics for Tomographic Models - Spectral Power

Magnitudes of Heterogeneity — Histograms

Magnitudes of Heterogeneity — Histograms

Histograms — Comparision with Tomography

Schuberth et al., 2009a

Histograms — Comparision with Tomography

Schuberth et al., 2009a

Tomographic Filtering of Flow Models

Tomographic Filtering of Flow Models

Rm^t

Ritsema et al. 2007

Schuberth et al., 2009b

Tomographic Filtering of Flow Models

Spectral heterogeneity maps after tomographic filtering

Low CMB Temp. corrected for resolution effects

Root-Mean-Square Profiles After Tomographic Filtering

Root-Mean-Square Profiles After Tomographic Filtering

RMS profiles match well for models with high CMB temperature especially in the deep mantle

Conclusions

The characteristics of a model show large differences between temperature and seismic velocities, especially in the upper mantle and transition zone

This difference is due to mantle mineralogy which shows a complex set of phase transformations in the transition zone

A large thermal gradient across the CMB in isochemical whole mantle flow seems compatible with the magnitude and lateral gradients of the elastic structure as seen by seismology

This may have implications for the possible contribution of chemical heterogeneity

Summary

Seismic tomography provides detailed images of Earth's elastic structure, but we face problems in the interpretation

High resolution mantle circulation modeling allows for the prediction of temperature variations with realistic magnitudes

Quantitative testing of geodynamic predictions against tomography mantle circulation models + thermodynamic models of mantle mineralogy

Consistent tests only possible if limited tomographic resolution is taken into account

The magnitude of lateral variations in thermal and elastic structure are a powerful diagnostic for studying deep earth dynamics

We need reliable information on magnitude of heterogeneity in the Earth from tomography!

Thank You For Your Attention!

S-wave velocity

S20RTS

