Accurate prediction of ground motion using an hp-adaptive discontinuous Galerkin finite-element method (DG-FEM)

V. Etienne ¹, E. Chaljub², J. Virieux² and S. Operto¹

¹Géoazur, Université de Nice Sophia-Antipolis, FRANCE ²LGIT, Université Joseph Fourier, FRANCE

1st QUEST Workshop Capo Caccia, Sardinia, 2010 September 19-25

Content

Introduction

DG-FEM

- Spatial and time discretizations
- Tetrahedral meshing
- Boundary conditions
- Convergence study
- Computing aspects
- hp-adaptivity

EUROSEISTEST Verification and Validation Project 3

- Model description
- Mesh building
- Numerical results

Conclusions and perspectives

Content

Introduction

- Spatial and time discretizations
- Tetrahedral meshing
- Convergence study
- Computing aspects
- hp-adaptivity
- **EUROSEISTEST** Verification and Validation Project
 - Model description
 - Mesh building
 - Numerical results

We investigate the potentials of DG-FEM for 3D seismic modeling

Advantages

- Common to FEM
 - Arbitrary mesh geometry (fit of complex topographies)
 - Adaptive mesh to physical properties (h-adaptivity)
 - Local method suitable for parallel computing
- Specific to DG-FEM
 - Interpolation order mixing (p-adaptivity)
 - Discontinuous wavefield can be supported (fluid/solid interface)

Drawbacks

• Computational cost, but...

We investigate the potentials of DG-FEM for 3D seismic modeling

Advantages

- Common to FEM
 - Arbitrary mesh geometry (fit of complex topographies)
 - Adaptive mesh to physical properties (h-adaptivity)
 - Local method suitable for parallel computing
- Specific to DG-FEM
 - Interpolation order mixing (p-adaptivity)
 - Discontinuous wavefield can be supported (fluid/solid interface)

Drawbacks

• Computational cost, but...

DG-FEM is competitive with other methods when complex topographies or extreme velocity contrasts are considered

Introduction

Characteristics of our approach

- 3D velocity-stress formulation in the time-domain
- Unstructured tetrahedral mesh (more flexible than hexahedral mesh)
- Nodal form of DG-FEM
- Constant physical properties per element
- Favour use of low interpolation orders for fine discretisation
- CPML absorbing boundary condition
- Intensive use of interpolation order mixing
 - Adapt the order according to elements size and medium properties
 - Lower order in the CPMLs to reduce the computational cost
- Centered flux (non-dissipative)

Content

DG-FEM

- Spatial and time discretizations
- Tetrahedral meshing
- Boundary conditions
- Convergence study
- Computing aspects
- hp-adaptivity

3 EUROSEISTEST Verification and Validation Project

- Model description
- Mesh building
- Numerical results
- 4 Conclusions and perspectives

DG-FEM - Spatial and time discretizations

Spatial discretization

- Discretize with non-overlapping and conformal tetrahedra
- Nodal form of DG-FEM (Hesthaven and Warburton, 2008)
- Approximate solution with Lagrangian polynomial basis functions and equidistant nodes

(a) P_0 element with unique DOF. (b) P_1 element element with 4 DOF. (c) P_2 element with 10 DOF.

Time discretization

Second order explicit leap-frog scheme

• Stability condition for the DG-FEM (Käser et al., 2008) gives $\Delta t < \frac{1}{2d_i+1} \cdot \min_i \frac{2r_i}{V_{P}}$

- r_i is the radius of the sphere inscribed in the element i
- V_{Pi} the P-wave velocity
- d_i the interpolation order of the cell

The minimum required time step is imposed to all elements

DG-FEM - Tetrahedral meshing

Benefits of tetrahedral meshing

- Based on the Delaunay triangulation principle (Delaunay, 1934)
- Great flexibility in terms of design (complex shape) and refinement (local adaptivity)
- Efficient tetrahedral meshers are available (we use TETGEN)

DG-FEM - Boundary conditions

Free surface

- Explicit condition by changing locally the flux expression
- Introduce virtual cells which are exactly symmetric to the cells located on the free surface
- Inside these cells, impose identical velocity but opposite stress wavefield

Absorbing condition

- Convolutional Perfectly Matched Layer (CPML) (Komatitsch and Martin, 2007)
- Unsplit formulation with memory variables
- Improve absorption of waves at grazing incidence
- In the CPML, the damping function is defined in the frequency domain as follows

$$s_{ heta} = \kappa_{ heta} + rac{d_{ heta}}{lpha_{ heta} + i\omega} \qquad orall heta \in \{x, y, z\}$$

with the angular frequency ω and $\kappa_\theta \geq 1$ and $\alpha_\theta \geq 0$

• If $\kappa_{\theta} = 1$ and $\alpha_{\theta} = 0$, one get the classical PML formulation (Berenger, 1994)

.

DG-FEM - Convergence study

Eigen mode in a cube

Initial conditions + free surfaces = continual monochromatic signals

Convergence rate

DG-FEM - Computing aspects

Parallelism

- Domain decomposition strategy, one subdomain = one CPU
- MPI communication between subdomains
- Efficient load balancing with mesh partitioning (METIS)
- Average parallelism efficiency of 80 %

Possible bottle-neck

- Time step is common for all subdomains
- Dramatic effects of badly shaped elements
- Mitigate these negative effects with p-adaptivity

09/23/2010 11 / 23

DG-FEM - hp-adaptivity

Interpolation order mixing : an efficient mean to mitigate effects of badly shaped tetrahedra

Downgrade order of badly shaped element = increase time step

Time step versus the element size for different interpolation orders with $V_P = 6000$ m/s Grey curve : P_0 ; blue curve : P_1 ; red curve : P_2 ; dashed line : interpolation order mixing

Our 2-step refinement approach

- 1st step : Iterative mesh refinement (h-adaptivity)
 - based on medium properties and discretization target (3 cells / λ with P₂)
 - repeated until required discretisation is reached

• 2nd step : adapt the interpolation order with an a priori error estimate (p-adaptivity)

$$\begin{array}{ll} P_2 & \text{if } \lambda/8 < \text{cell size} \\ P_1 & \text{if } \lambda/24 < \text{cell size} \leq \lambda/8 \\ P_0 & \text{if cell size} \leq \lambda/24 \end{array} \right\} \text{heuristic criteria}$$

Content

- Spatial and time discretizations
- Tetrahedral meshing
- Convergence study
- Computing aspects
- hp-adaptivity

EUROSEISTEST Verification and Validation Project 3

- Model description
- Mesh building
- Numerical results

EUROSEISTEST - Model description

EUROSEISTEST Verification and Validation project

- Organized by CEA, LGIT, University of Thessaloniki and Institute Laue Langevin
- 10 modeling teams (FDM, FEM, SEM, DEM, DG-FEM and PSM)

Model characteristics

- Sedimentary basin 30 km E-NE of Thessaloniki (Northern Greece)
- Low velocity in basin and high velocity bedrock

	P-wave velocity	S-wave velocity	Ratio V _P / V _S	Max. depth
Basin	from 1000 to 3027 m/s	from 200 to 848 m/s	from 5.00 to 3.57	411 m
Bedrock	from 4500 to 6144 m/s	from 2600 to 3444 m/s	from 1.73 to 1.78	8 km

- Ratio Max. V_S / Min. $V_S = 17$
- High Poisson ratio in the basin
- Thin structures
- Double-couple source with max. frequency of 4 Hz ($M_w = 1.3$)

• □ ▶ • @ ▶ • E ▶ •

EUROSEISTEST - Model description

(a) View of the mesh in the plan xy at z = 0 m showing the P-wave velocity associated to each cell in the EUROSEISTEST model. The receivers are represented with numbered green triangles and the source epicenter with a yellow star. (b) Same with S-wave velocity associated to each cell. The direction of the cross-section AB is indicated with a white segment.

< □ > < 同 > < 三 > <

EUROSEISTEST - Mesh building

Iterative mesh refinement (h-adaptivity)

(a) Cross section AB of the mesh at the first iteration of the h-refinement showing the S-wave velocity associated to each cell in the EUROSEISTEST model. (b) Same as (a) at the second iteration of the h-refinement. (c) Same as (a) at the sixth and last iteration of the h-refinement.

EUROSEISTEST - Mesh building

Interpolation order mixing (p-adaptivity)

(a) View of the mesh in the plan xy at z = 0 m showing the size of the elements (insphere radius) in the EUROSEISTEST model. (b) Same with interpolation order associated to each cell. P_2 elements are represented in white, P_1 in grey and P_0 in black.

- The basin represents 1 % of the model and contains more than 70 % elements in the mesh
- 65.51 % P₂, 34.36 % P₁ (with 31.51 % in CPML) and 0.13 % P₀ elements
- Interpolation order mixing plays an important role at the basin edges

V. Etienne (Univ. Nice Sophia-Ant.) Ground motion prediction with DG-FEM

EUROSEISTEST - Numerical results

Comparison between DG-FEM and SEM

(a) Seismograms of v_x computed with DG-FEM (black line) and SEM (red line). (b) Same as (a) with v_z .

Perfect match between both solutions for receivers in bedrock (1 and 4)

For other receivers

- for v_z very good agreement
- for v_x good for short times but misfits are increasing with time

EUROSEISTEST - Numerical results

Model discretization

When looking closely at the free surface with a reduced velocity scale...

(a) View of the mesh in the plan xy at z = 0 m showing the P-wave velocity. (b) Same with S-wave velocity.

Due to constant properties per element, velocities at the free surface are higher than real values ($V_P = 1000 \text{ m/s}$ and $V_S = 200 \text{ m/s}$)

 \Rightarrow It may be the origins of the misfits at long times

EUROSEISTEST - Numerical results

Comparison between DG-FEM and SEM

(a) Peak Ground Velocity (PGV) map computed for the EUROSEISTEST modeling with DG-FEM. The receivers are represented with numbered white triangles and the source epicenter with a yellow star. (b) Same as (a) computed with SEM.

Excellent agreement of the PGV maps between DG-FEM and SEM

< ロ > < 同 > < 回 > < 回 >

20 / 23

Comparison between DG-FEM and SEM

If time permits, let's see a little movie of the ground motion...

V. Etienne (Univ. Nice Sophia-Ant.) Ground motion prediction with DG-FEM

Comparison between DG-FEM and SEM

Mesh statistics

Method	Order	I _{min}	I _{max}	Nb elements	Nb DOF	Nb unknowns
DG-FEM	$P_2/P_1/P_0$	2.5 m	399.8 m	$16.3 imes10^6$	$131.6 imes10^6$	$1.31 imes10^9$
SEM	P_4	20.0 m	908.0 m	$1.4 imes10^{6}$	$91.7 imes10^{6}$	$0.27 imes10^9$

Computation times

Method	Nb time steps	Nb procs	CPU time	Mem.	CPU type
DG-FEM	122 565	144	52h	26 GB	IBM E5420 2.5 Ghz
SEM	75 000	144	7h	25 GB	IBM E5420 2.5 Ghz

• Ratio DG-FEM CPU time / SEM CPU time is 7 (for similar accuracy)

- Number of unknowns is 4.8 times higher with DG-FEM
- Number of time steps is 1.6 times higher with DG-FEM
- In more complex media, DG-FEM should be more competitive...

< 口 > < 凸

Content

- Spatial and time discretizations
- Tetrahedral meshing
- Convergence study
- Computing aspects
- hp-adaptivity

EUROSEISTEST Verification and Validation Project

- Model description
- Mesh building
- Numerical results

Conclusions and perspectives

Conclusions

- DG-FEM has great potentials for seismic modeling in highly heterogeneous media
- Designed an effective hp-adaptive scheme (CPU time reduced by one order of magnitude)
- Approach has been validated with the EUROSEISTEST Verification and Validation Project

Perspectives

- Take into account anisotropy
- Allow for physical properties variation inside elements
 - Explore higher orders in space
 - Explore higher orders in time
- Implement visco-elastic rheologies (Käser et al., 2007)
- Wave propagation in fractured media
- Dynamic rupture (BenJemaa et al., 2007, 2009; de la Puente et al., 2009)
- Application of the method to Full Waveform Inversion (FWI)

09/23/2010 24 / 23

★ ∃ ► ★

- BenJemaa, M., Glinsky-Olivier, N., Cruz-Atienza, V. M., and Virieux, J. (2009). 3D Dynamic rupture simulations by a finite volume method. *Geophys. J. Int.*, 178:541–560.
- BenJemaa, M., Glinsky-Olivier, N., Cruz-Atienza, V. M., Virieux, J., and Piperno, S. (2007). Dynamic non-planar crack rupture by a finite volume method. *Geophys. J. Int.*, 171:271–285.
- Berenger, J.-P. (1994). A perfectly matched layer for absorption of electromagnetic waves. Journal of Computational Physics, 114 :185–200.
- de la Puente, J., Ampuero, J.-P., and Käser, M. (2009). Dynamic Rupture Modeling on Unstructured Meshes Using a Discontinuous Galerkin Method. J. Geophys. Res., 114 :B10302.
- Delaunay, B. (1934). Sur la sphère vide. Bul. Acad. Sci. URSS, Class. Sci. Nat., pages 793-800.
- Hesthaven, J. S. and Warburton, T. (2008). Nodal Discontinuous Galerkin Method. Algorithms, Analysis, and Application. Springer, New York.
- Käser, M., Dumbser, M., de la Puente, J., and Igel, H. (2007). An Arbitrary High Order Discontinuous Galerkin Method for Elastic Waves on Unstructured Meshes III : Viscoelastic Attenuation. *Geophysical Journal International*, 168(1):224–242.
- Käser, M., Hermann, V., and de la Puente, J. (2008). Quantitative accuracy analysis of the discontinuous Galerkin method for seismic wave propagation. *Geophysical Journal International*, 173(2):990–999.
- Komatitsch, D. and Martin, R. (2007). An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation. *Geophysics*, 72(5) :SM155–SM167.

< □ > < □ > < □ > < □ > < □ > < □ >