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Introduction

We investigate the potentials of DG-FEM for 3D seismic modeling

Advantages

Common to FEM

Arbitrary mesh geometry (fit of complex topographies)
Adaptive mesh to physical properties (h-adaptivity)
Local method suitable for parallel computing

Specific to DG-FEM

Interpolation order mixing (p-adaptivity)
Discontinuous wavefield can be supported (fluid/solid interface)

Drawbacks

Computational cost, but...

DG-FEM is competitive with other methods when complex
topographies or extreme velocity contrasts are considered
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Introduction

Characteristics of our approach

3D velocity-stress formulation in the time-domain

Unstructured tetrahedral mesh (more flexible than hexahedral mesh)

Nodal form of DG-FEM

Constant physical properties per element

Favour use of low interpolation orders for fine discretisation

CPML absorbing boundary condition

Intensive use of interpolation order mixing

Adapt the order according to elements size and medium properties
Lower order in the CPMLs to reduce the computational cost

Centered flux (non-dissipative)

V. Etienne (Univ. Nice Sophia-Ant.) Ground motion prediction with DG-FEM 09/23/2010 5 / 23



Content

1 Introduction

2 DG-FEM
Spatial and time discretizations
Tetrahedral meshing
Boundary conditions
Convergence study
Computing aspects
hp-adaptivity

3 EUROSEISTEST Verification and Validation Project
Model description
Mesh building
Numerical results

4 Conclusions and perspectives

V. Etienne (Univ. Nice Sophia-Ant.) Ground motion prediction with DG-FEM 09/23/2010 6 / 23



DG-FEM - Spatial and time discretizations

Spatial discretization

Discretize with non-overlapping and conformal tetrahedra

Nodal form of DG-FEM (Hesthaven and Warburton, 2008)

Approximate solution with Lagrangian polynomial basis functions and equidistant nodes

(a) P0 element with unique DOF. (b) P1 element element with 4 DOF. (c) P2 element with 10 DOF.

Time discretization

Second order explicit leap-frog scheme

Stability condition for the DG-FEM (Käser et al., 2008) gives ∆t < 1
2di +1

·mini
2ri
VP i

ri is the radius of the sphere inscribed in the element i
VP i the P-wave velocity
di the interpolation order of the cell

The minimum required time step is imposed to all elements
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DG-FEM - Tetrahedral meshing

Benefits of tetrahedral meshing

Based on the Delaunay triangulation principle (Delaunay, 1934)

Great flexibility in terms of design (complex shape) and refinement (local adaptivity)

Efficient tetrahedral meshers are available (we use TETGEN)

Example of a complex mesh, the volcano ’La Soufrière’
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DG-FEM - Boundary conditions

Free surface

Explicit condition by changing locally the flux expression

Introduce virtual cells which are exactly symmetric to the cells located on the free surface

Inside these cells, impose identical velocity but opposite stress wavefield

Absorbing condition

Convolutional Perfectly Matched Layer (CPML) (Komatitsch and Martin, 2007)

Unsplit formulation with memory variables

Improve absorption of waves at grazing incidence

In the CPML, the damping function is defined in the frequency domain as follows

sθ = κθ +
dθ

αθ + iω
∀θ ∈ {x , y , z}

with the angular frequency ω and κθ ≥ 1 and αθ ≥ 0

If κθ = 1 and αθ = 0, one get the classical PML formulation (Berenger, 1994)
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DG-FEM - Convergence study

Eigen mode in a cube
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Second order convergence for P1 (red) or P2 (blue), but no convergence for P0 (black)
V. Etienne (Univ. Nice Sophia-Ant.) Ground motion prediction with DG-FEM 09/23/2010 10 / 23



DG-FEM - Computing aspects

Parallelism

Domain decomposition strategy, one subdomain = one CPU

MPI communication between subdomains

Efficient load balancing with mesh partitioning (METIS)

Average parallelism efficiency of 80 %
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Time step is common for all subdomains

Dramatic effects of badly shaped elements

Mitigate these negative effects with p-adaptivity
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DG-FEM - hp-adaptivity

Interpolation order mixing : an efficient mean to mitigate effects of badly shaped tetrahedra

Downgrade order of badly shaped element = increase time step
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Grey curve : P0 ; blue curve : P1 ; red curve : P2 ; dashed line : interpolation order mixing

Our 2-step refinement approach

1st step : Iterative mesh refinement (h-adaptivity)
based on medium properties and discretization target (3 cells / λ with P2)
repeated until required discretisation is reached

2nd step : adapt the interpolation order with an a priori error estimate (p-adaptivity)

P2 if λ/8 < cell size
P1 if λ/24 < cell size ≤ λ/8
P0 if cell size ≤ λ/24

9=; heuristic criteria

V. Etienne (Univ. Nice Sophia-Ant.) Ground motion prediction with DG-FEM 09/23/2010 12 / 23



Content

1 Introduction

2 DG-FEM
Spatial and time discretizations
Tetrahedral meshing
Boundary conditions
Convergence study
Computing aspects
hp-adaptivity

3 EUROSEISTEST Verification and Validation Project
Model description
Mesh building
Numerical results

4 Conclusions and perspectives

V. Etienne (Univ. Nice Sophia-Ant.) Ground motion prediction with DG-FEM 09/23/2010 13 / 23



EUROSEISTEST - Model description

EUROSEISTEST Verification and Validation project

Organized by CEA, LGIT, University of Thessaloniki and Institute Laue Langevin

10 modeling teams (FDM, FEM, SEM, DEM, DG-FEM and PSM)

Model characteristics

Sedimentary basin 30 km E-NE of Thessaloniki (Northern Greece)

Low velocity in basin and high velocity bedrock

P-wave velocity S-wave velocity Ratio VP / VS Max. depth
Basin from 1000 to 3027 m/s from 200 to 848 m/s from 5.00 to 3.57 411 m
Bedrock from 4500 to 6144 m/s from 2600 to 3444 m/s from 1.73 to 1.78 8 km

Ratio Max. VS / Min. VS = 17

High Poisson ratio in the basin

Thin structures

Double-couple source with max. frequency of 4 Hz (Mw = 1.3)
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EUROSEISTEST - Model description

Velocity model
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(a) View of the mesh in the plan xy at z = 0 m showing the P-wave velocity associated to each cell in the EUROSEISTEST
model. The receivers are represented with numbered green triangles and the source epicenter with a yellow star. (b) Same with

S-wave velocity associated to each cell. The direction of the cross-section AB is indicated with a white segment.
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EUROSEISTEST - Mesh building

Iterative mesh refinement (h-adaptivity)
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(a) Cross section AB of the mesh at the first iteration of the h-refinement showing the S-wave velocity associated to each cell in
the EUROSEISTEST model. (b) Same as (a) at the second iteration of the h-refinement. (c) Same as (a) at the sixth and last

iteration of the h-refinement.
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EUROSEISTEST - Mesh building

Interpolation order mixing (p-adaptivity)
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(a) View of the mesh in the plan xy at z = 0 m showing the size of the elements (insphere radius) in the EUROSEISTEST model.
(b) Same with interpolation order associated to each cell. P2 elements are represented in white, P1 in grey and P0 in black.

The basin represents 1 % of the model and contains more than 70 % elements in the mesh

65.51 % P2, 34.36 % P1 (with 31.51 % in CPML) and 0.13 % P0 elements

Interpolation order mixing plays an important role at the basin edges
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EUROSEISTEST - Numerical results

Comparison between DG-FEM and SEM
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(a) Seismograms of vx computed with DG-FEM (black line) and SEM (red line). (b) Same as (a) with vz .

Perfect match between both solutions for receivers in bedrock (1 and 4)

For other receivers

for vz very good agreement
for vx good for short times but misfits are increasing with time
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EUROSEISTEST - Numerical results

Model discretization
When looking closely at the free surface with a reduced velocity scale...
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(a) View of the mesh in the plan xy at z = 0 m showing the P-wave velocity. (b) Same with S-wave velocity.

Due to constant properties per element, velocities at the free surface are higher than real
values (VP = 1000 m/s and VS = 200 m/s)

⇒ It may be the origins of the misfits at long times
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EUROSEISTEST - Numerical results

Comparison between DG-FEM and SEM
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(a) Peak Ground Velocity (PGV) map computed for the EUROSEISTEST modeling with DG-FEM. The receivers are represented
with numbered white triangles and the source epicenter with a yellow star. (b) Same as (a) computed with SEM.

Excellent agreement of the PGV maps between DG-FEM and SEM
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EUROSEISTEST - Numerical results

Comparison between DG-FEM and SEM

If time permits,
let’s see a little movie of the ground motion...
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EUROSEISTEST - Numerical results

Comparison between DG-FEM and SEM
Mesh statistics

Method Order lmin lmax Nb elements Nb DOF Nb unknowns
DG-FEM P2/P1/P0 2.5 m 399.8 m 16.3× 106 131.6× 106 1.31× 109

SEM P4 20.0 m 908.0 m 1.4× 106 91.7× 106 0.27× 109

Computation times

Method Nb time steps Nb procs CPU time Mem. CPU type
DG-FEM 122 565 144 52h 26 GB IBM E5420 2.5 Ghz
SEM 75 000 144 7h 25 GB IBM E5420 2.5 Ghz

Ratio DG-FEM CPU time / SEM CPU time is 7 (for similar accuracy)

Number of unknowns is 4.8 times higher with DG-FEM
Number of time steps is 1.6 times higher with DG-FEM

In more complex media, DG-FEM should be more competitive...
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Conclusions and perspectives

Conclusions
DG-FEM has great potentials for seismic modeling in highly heterogeneous media

Designed an effective hp-adaptive scheme (CPU time reduced by one order of magnitude)

Approach has been validated with the EUROSEISTEST Verification and Validation Project

Perspectives
Take into account anisotropy

Allow for physical properties variation inside elements

Explore higher orders in space
Explore higher orders in time

Implement visco-elastic rheologies (Käser et al., 2007)

Wave propagation in fractured media

Dynamic rupture (BenJemaa et al., 2007, 2009; de la Puente et al., 2009)

Application of the method to Full Waveform Inversion (FWI)
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