
Running 3D Finite-difference or Spectral-element
Wave Propagation Codes Faster Using a GPU Cluster

Dimitri Komatitsch, Pieyre Le Loher and David Michéa
(Univ Pau, CNRS and INRIA Sud-Ouest Magique3D)

Gordon Erlebacher (Department of Scientific Computing,
Florida State University, USA)

Dominik Göddeke (TU Dortmund, Germany)

QUEST workshop
September 23, 2010



Outlines

 
● Why we are involved in HPC
● Porting on GPU a scientific code based upon :

- The Spectral Element Method
● - Finite Differences







Spectral-Element Method 

 Developed in Computational Fluid 
Dynamics (Patera 1984)

 Accuracy of a pseudospectral 
method, flexibility of a finite-
element method 

 Extended by Komatitsch and 
Tromp, Chaljub et al., Capdeville et 
al.

 Large curved “spectral” finite-
elements with high-degree 
polynomial interpolation

 Mesh honors the main 
discontinuities (velocity, density) 
and topography

 Very efficient on parallel 
computers, no linear system    to 
invert (diagonal mass matrix)



Our SPECFEM3D software package

Goal: modeling seismic wave propagation in the full Earth or in densely 
populated regions following large earthquakes

The SPECFEM3D source code is open (GNU GPL v2)

Mostly developed by Dimitri Komatitsch and Jeroen Tromp at Harvard 
University, Caltech and Princeton (USA) and University of Pau (France) since 

1996.

Improved with the Barcelona Supercomputing Center, Spain (Jesús Labarta et 
al.)

and David Michéa (INRIA, Pau, HPC-Europa program, 2007),
Nicolas Le Goff, Pieyre Le Loher and Roland Martin (CNRS and INRIA, Pau).
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Results for load balancing: cache misses (J. Labarta, 
BSC)

V4.0

V3.6

V4.0

V4.0

=> it is crucial to reuse common points by 
keeping
them in the cache

ParaVer analysis
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GPU = Graphics Processing Unit
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Minimize CPU ↔ GPU data transfers
CPU ↔ GPU memory bandwidth much lower than GPU memory 
bandwidth

Use page-locked host memory (cudaMallocHost()) for maximum CPU ↔ 
GPU bandwidth

• Minimize CPU ↔ GPU data transfers by moving more code from 
CPU to GPU
– Even if that means running kernels with low parallelism computations

– Intermediate data structures can be allocated, operated on, and deallocated 
without ever copying them to CPU memory

• Group data transfers
– One large transfer much better than many small ones

Fit all the arrays on the GPU card to avoid costly CPU ↔ GPU data 
transfers

But of course the MPI buffers must remain on the CPU, therefore 
we can not avoid a small number of transfers (of 2D cut planes)
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Porting SPECFEM3D on CUDA

At each iteration of the serial time loop, three main 
types of operations are performed:

update (with no dependency) of some global arrays 
composed of the unique points of the mesh

purely local calculations of the product of 
predefined derivative matrices with a local copy of 
the displacement vector along cut planes in the 
three directions (i, j and k) of a 3D spectral element

update (with no dependency) of other global arrays 
composed of the unique points of the mesh
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Porting SPECFEM3D on CUDA:
global numbering versus local numbering

In 3D and for NGLL = 5, for a regular hexahedral mesh there are:
125 GLL integration points in each element
27 belong only to this element
98 belong to several elements

=> one thread per grid point (i.e., 125 threads per finite element)
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Porting SPECFEM3D on CUDA: mesh coloring

Key challenge: ensure that 
contributions from two local 
nodes never update the 
same global value from 
different warps

Use of mesh coloring: 
suppress dependencies 
between mesh points inside 
a given kernel
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Porting SPECFEM3D on CUDA: adding MPI

MPI communications cost on GPU version ~ 5%, 

> We need to use non-blocking MPI communications.

> MPI communications are very well overlapped
by computations on the GPU.

A B

C D

Non blocking MPI: update done in communication buffers (for outer mesh elements first)



Collaboration with Roland Martin and Nicolas Le Goff (Univ of Pau, France)

Use non-blocking MPI
Classical overlapping, see e.g. Danielson and Namburu (1998)

Works fine only if the interior 
of each domain is big enough.
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Porting SPECFEM3D on CUDA: validation
Validation and single precision efficiency:

Seismogram = 
time variation 

of displacement
at a given point
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Multi-GPU weak scaling (up to 192 
GPUs)

It is difficult to define speedup: versus what?
For us, on the CEA/CCRT/GENCI GPU/Nehalem 

cluster, about 20x for one GPU versus one CPU 
core.

Weak scaling is close to perfect.
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The S_GPU library

Implemented by Matthieu 
Ospici, Jérôme Reybert, Jean-
François Méhaut                 
(INRIA Grenôble – MESCAL) 
Virtualization : 1 GPU visible 
per CPU core
Instructions scheduling done 
by S_GPU, not by CUDA
Memory transfers / 
computations overlapping
Written in C++ and CUDA, 
binding Fortran
Limited intrusion in the source 
code

MPI_COM_WOR
LD

M.GPU

M.GPU

t0 t4
t7 t5

t1
t2

t3
t6

S
G
P
U
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S_GPU : running traces

Memory transfer
CPU - GPU 

Computation (GPU)

So far, up to 20 % faster than CUDA  
(CUDA 3.1 ,  Tesla T10)  
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Porting the FD code ONDES3D to CUDA (done 
with David Michéa from BRGM, France).

>  Computation stencil leads to 
high reading redundancy

> Necessity to massively use 
shared memory

>  Reduce the ratio halo_points / 
block_points to reduce 
redundancy

> Intuitive approach : 3D blocks 
that minimize the ratio halo/points

> problem: not enough shared 
memory to have 3D blocks big 
enough to get a good ratio.

Implementing Finite-Difference code on GPU :

=> 13 global memory accesses / 
thread for each iteration
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Porting the FD code ONDES3D to CUDA

The  approach of P. Micikevicius from NVIDIA (2009): 
a sliding window algorithm

> use 2D tile instead of 3D blocks and loop along z axis

> in 2D, the amount of shared memory is sufficient to 
have tiles big enough to obtain a good ratio between halo 
points and computed points.

> data along z axis are shifted in registers at each 
iteration in a pipeline way => except for halos, only one 
global memory data need to be loaded at each iteration 
for a point.
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Porting the FD code ONDE3D to CUDA

We use one thread per point in the xy plane and we tile it with  blocks of 
16x8 threads.

For a block : 4*16 + 4*8 + 16*8 data loaded by 16*8 threads

=> 1.75 global memory accesses / thread for each iteration (compared to 13 
accesses before, i.e., 7.5 times fewer)
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Porting the FD code ONDE3D to CUDA

 Scaling along Z is almost linear. 
 Despite the coalesced memory accesses, scaling along X is not 

regular and suffers from pathological cases

Speedup : from 20x to 
60x

Speedup depends on :

> Speedup definition!

> Compilers

> C-PML thickness

> model size
 

Best performance is 
obtained for C-PML 
thickness = 16 and 
model width multiple 
of 16.



Conclusions and future work

 We get a speedup of 20x on a cluster of GPUs for spectral 
elements with non-blocking MPI, and 20x to 60x in the case of 
finite differences

 It is crucial to use larger domains to compensate for the very 
high speedup

 In future work, we could use OpenCL (to support other 
hardware)

 Need for some kind of OpenMP for GPUs: CAPS HMPP, 
StarSs, StarPU...

Dimitri Komatitsch, David Michéa and Gordon Erlebacher, Porting a high-order finite-element 
earthquake modeling application to NVIDIA graphics cards using CUDA, Journal of Parallel and 
Distributed Computing, vol. 69(5), p. 451-460, doi: 10.1016/j.jpdc.2009.01.006 (2009).

David Michéa and Dimitri Komatitsch, Accelerating a 3D finite-difference wave propagation 
code using GPU graphics cards, Geophysical Journal International, vol. 182(1), p. 389-402,
doi: 10.1111/j.1365-246X.2010.04616.x, (2010). 



Thank you 
for your attention



SLIDES 
FOR 
QUESTIONS



Brief history of numerical 
methods 
Seismic wave equation : tremendous increase of computational power
⇒ development of numerical methods for accurate calculation of synthetic 

seismograms in complex 3D geological models has been a continuous effort in 
last   30 years.

Finite-difference methods : Yee 1966, Chorin 1968, Alterman and Karal 1968, 
Madariaga 1976, Virieux 1986, Moczo et al, Olsen et al..., difficult for 
boundary conditions, surface waves, topography, full Earth

Boundary-element or boundary-integral methods (Kawase 1988, Sanchez-Sesma 
et al. 1991) : homogeneous layers, expensive in 3D

Spectral and pseudo-spectral methods (Carcione 1990) : smooth media, difficult 
for boundary conditions, difficult on parallel computers

Classical finite-element methods (Lysmer and Drake 1972, Marfurt 1984, Bielak 
et al 1998) : linear systems, large amount of numerical dispersion

Let us combine the advantages of the last two techniques.



Final mesh of the Earth

 “Gnomonic” mapping (Sadourny 1972)

 Ronchi et al. (1996), Chaljub (2000)

 Analytical mapping from six faces of cube 
to unit sphere



BLAS 3 (Basic Linear Algebra 
Subroutines)

Can we use highly optimized BLAS matrix/matrix products (90% of computations)?

For one element:  matrices (5x25, 25x5, 5 x matrices of (5x5)), BLAS is not efficient: 
overhead is too expensive for matrices smaller than 20 to 30 square.

If we build big matrices by appending several elements, we have to build 3 matrices, 
each having a main direction (x,y,z), which causes a lot of cache misses due to the 
global access  because the elements are taken in different orders, thus destroying 
spatial locality.

Since all arrays are static, the compiler already produces a very well optimized code.

5x  5 x NDIM x Nb elem ...
5

5
5

=> No need to, and cannot easily use BLAS

=> Compiler already does an excellent job for small static loops



Global Simulations: SPECFEM3D_GLOBE
Open source: geodynamics.org

On-demand TeraGrid applications:
• Automated, near real-time simulations of all M>6 

        earthquakes
• Analysis of past events (more than 20,000 events)
• Seismology Web Portal (geodynamics.org)

Petascale simulations:
• Global simulations at 1-2 Hz
• Reached 1.15 s period on 149,784 cores at ORNL
• Moving towards global ‘adjoint tomography’

SPECFEM3D_GLOBE Users Map

Princeton University +
Barcelona Supercomputing
Center





Finite elements

 High-degree pseudospectral 
      finite elements

 N = 4 to 12 usually
 Exactly Diagonal mass 
matrix
 No linear system to invert



Differential or strongstrong form (e.g., finite differences):

fΤ  s      +⋅∇=∂2
tρ

We solve the integral or weakweak form:

∫∫ ∇−=∂⋅ rΤ:wrsw 332 ddt ρ

( ) ( ) rnΤwrw:Μ 2

S F
d ˆ   s ⋅⋅−∇+ ∫ −

tS

Equations of motion (solid)

+ attenuation (memory variables) if needed for viscoelasticity.


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

