
Running 3D Finite-difference or Spectral-element
Wave Propagation Codes Faster Using a GPU Cluster

Dimitri Komatitsch, Pieyre Le Loher and David Michéa
(Univ Pau, CNRS and INRIA Sud-Ouest Magique3D)

Gordon Erlebacher (Department of Scientific Computing,
Florida State University, USA)

Dominik Göddeke (TU Dortmund, Germany)

QUEST workshop
September 23, 2010

Outlines

● Why we are involved in HPC
● Porting on GPU a scientific code based upon :

- The Spectral Element Method
● - Finite Differences

Spectral-Element Method

 Developed in Computational Fluid
Dynamics (Patera 1984)

 Accuracy of a pseudospectral
method, flexibility of a finite-
element method

 Extended by Komatitsch and
Tromp, Chaljub et al., Capdeville et
al.

 Large curved “spectral” finite-
elements with high-degree
polynomial interpolation

 Mesh honors the main
discontinuities (velocity, density)
and topography

 Very efficient on parallel
computers, no linear system to
invert (diagonal mass matrix)

Our SPECFEM3D software package

Goal: modeling seismic wave propagation in the full Earth or in densely
populated regions following large earthquakes

The SPECFEM3D source code is open (GNU GPL v2)

Mostly developed by Dimitri Komatitsch and Jeroen Tromp at Harvard
University, Caltech and Princeton (USA) and University of Pau (France) since

1996.

Improved with the Barcelona Supercomputing Center, Spain (Jesús Labarta et
al.)

and David Michéa (INRIA, Pau, HPC-Europa program, 2007),
Nicolas Le Goff, Pieyre Le Loher and Roland Martin (CNRS and INRIA, Pau).

Dimitri Komatitsch
Jeroen Tromp

Qinya Liu
David Michéa

Min Chen
Vala Hjörleifsdóttir

Jesús Labarta
Nicolas Le Goff
Pieyre Le Loher

Alessia Maggi
Roland Martin

Daniel Peter
Brian Savage

Bernhard Schuberth
Carl Tape

…

Results for load balancing: cache misses (J. Labarta,
BSC)

V4.0

V3.6

V4.0

V4.0

=> it is crucial to reuse common points by
keeping
them in the cache

ParaVer analysis

© NVIDIA Corporation 2006

Graphics cards
H o s t

K e r n e l
1

K e r n e l
2

D e v i c e

G r i d 1

B l o c k
(0 , 0)

B l o c k
(1 , 0)

B l o c k
(2 , 0)

B l o c k
(0 , 1)

B l o c k
(1 , 1)

B l o c k
(2 , 1)

G r i d 2

B l o c k (1 , 1)

T h r e a d
(0 , 1)

T h r e a d
(1 , 1)

T h r e a d
(2 , 1)

T h r e a d
(3 , 1)

T h r e a d
(4 , 1)

T h r e a d
(0 , 2)

T h r e a d
(1 , 2)

T h r e a d
(2 , 2)

T h r e a d
(3 , 2)

T h r e a d
(4 , 2)

T h r e a d
(0 , 0)

T h r e a d
(1 , 0)

T h r e a d
(2 , 0)

T h r e a d
(3 , 0)

T h r e a d
(4 , 0)

NVIDIA GeForce 8800 GTX

GPU = Graphics Processing Unit

© NVIDIA Corporation 2006

Minimize CPU ↔ GPU data transfers
CPU ↔ GPU memory bandwidth much lower than GPU memory
bandwidth

Use page-locked host memory (cudaMallocHost()) for maximum CPU ↔
GPU bandwidth

• Minimize CPU ↔ GPU data transfers by moving more code from
CPU to GPU
– Even if that means running kernels with low parallelism computations

– Intermediate data structures can be allocated, operated on, and deallocated
without ever copying them to CPU memory

• Group data transfers
– One large transfer much better than many small ones

Fit all the arrays on the GPU card to avoid costly CPU ↔ GPU data
transfers

But of course the MPI buffers must remain on the CPU, therefore
we can not avoid a small number of transfers (of 2D cut planes)

© NVIDIA Corporation 2006

Porting SPECFEM3D on CUDA

At each iteration of the serial time loop, three main
types of operations are performed:

update (with no dependency) of some global arrays
composed of the unique points of the mesh

purely local calculations of the product of
predefined derivative matrices with a local copy of
the displacement vector along cut planes in the
three directions (i, j and k) of a 3D spectral element

update (with no dependency) of other global arrays
composed of the unique points of the mesh

© NVIDIA Corporation 2006

Porting SPECFEM3D on CUDA:
global numbering versus local numbering

In 3D and for NGLL = 5, for a regular hexahedral mesh there are:
125 GLL integration points in each element
27 belong only to this element
98 belong to several elements

=> one thread per grid point (i.e., 125 threads per finite element)

© NVIDIA Corporation 2006

Porting SPECFEM3D on CUDA: mesh coloring

Key challenge: ensure that
contributions from two local
nodes never update the
same global value from
different warps

Use of mesh coloring:
suppress dependencies
between mesh points inside
a given kernel

© NVIDIA Corporation 2006

Porting SPECFEM3D on CUDA: adding MPI

MPI communications cost on GPU version ~ 5%,

> We need to use non-blocking MPI communications.

> MPI communications are very well overlapped
by computations on the GPU.

A B

C D

Non blocking MPI: update done in communication buffers (for outer mesh elements first)

Collaboration with Roland Martin and Nicolas Le Goff (Univ of Pau, France)

Use non-blocking MPI
Classical overlapping, see e.g. Danielson and Namburu (1998)

Works fine only if the interior
of each domain is big enough.

© NVIDIA Corporation 2006

Porting SPECFEM3D on CUDA: validation
Validation and single precision efficiency:

Seismogram =
time variation

of displacement
at a given point

© NVIDIA Corporation 2006

Multi-GPU weak scaling (up to 192
GPUs)

It is difficult to define speedup: versus what?
For us, on the CEA/CCRT/GENCI GPU/Nehalem

cluster, about 20x for one GPU versus one CPU
core.

Weak scaling is close to perfect.

© NVIDIA Corporation 2006

The S_GPU library

Implemented by Matthieu
Ospici, Jérôme Reybert, Jean-
François Méhaut
(INRIA Grenôble – MESCAL)
Virtualization : 1 GPU visible
per CPU core
Instructions scheduling done
by S_GPU, not by CUDA
Memory transfers /
computations overlapping
Written in C++ and CUDA,
binding Fortran
Limited intrusion in the source
code

MPI_COM_WOR
LD

M.GPU

M.GPU

t0 t4
t7 t5

t1
t2

t3
t6

S
G
P
U

© NVIDIA Corporation 2006

S_GPU : running traces

Memory transfer
CPU - GPU

Computation (GPU)

So far, up to 20 % faster than CUDA
(CUDA 3.1 , Tesla T10)

© NVIDIA Corporation 2006

Porting the FD code ONDES3D to CUDA (done
with David Michéa from BRGM, France).

> Computation stencil leads to
high reading redundancy

> Necessity to massively use
shared memory

> Reduce the ratio halo_points /
block_points to reduce
redundancy

> Intuitive approach : 3D blocks
that minimize the ratio halo/points

> problem: not enough shared
memory to have 3D blocks big
enough to get a good ratio.

Implementing Finite-Difference code on GPU :

=> 13 global memory accesses /
thread for each iteration

© NVIDIA Corporation 2006

Porting the FD code ONDES3D to CUDA

The approach of P. Micikevicius from NVIDIA (2009):
a sliding window algorithm

> use 2D tile instead of 3D blocks and loop along z axis

> in 2D, the amount of shared memory is sufficient to
have tiles big enough to obtain a good ratio between halo
points and computed points.

> data along z axis are shifted in registers at each
iteration in a pipeline way => except for halos, only one
global memory data need to be loaded at each iteration
for a point.

© NVIDIA Corporation 2006

Porting the FD code ONDE3D to CUDA

We use one thread per point in the xy plane and we tile it with blocks of
16x8 threads.

For a block : 4*16 + 4*8 + 16*8 data loaded by 16*8 threads

=> 1.75 global memory accesses / thread for each iteration (compared to 13
accesses before, i.e., 7.5 times fewer)

© NVIDIA Corporation 2006

Porting the FD code ONDE3D to CUDA

 Scaling along Z is almost linear.
 Despite the coalesced memory accesses, scaling along X is not

regular and suffers from pathological cases

Speedup : from 20x to
60x

Speedup depends on :

> Speedup definition!

> Compilers

> C-PML thickness

> model size

Best performance is
obtained for C-PML
thickness = 16 and
model width multiple
of 16.

Conclusions and future work

 We get a speedup of 20x on a cluster of GPUs for spectral
elements with non-blocking MPI, and 20x to 60x in the case of
finite differences

 It is crucial to use larger domains to compensate for the very
high speedup

 In future work, we could use OpenCL (to support other
hardware)

 Need for some kind of OpenMP for GPUs: CAPS HMPP,
StarSs, StarPU...

Dimitri Komatitsch, David Michéa and Gordon Erlebacher, Porting a high-order finite-element
earthquake modeling application to NVIDIA graphics cards using CUDA, Journal of Parallel and
Distributed Computing, vol. 69(5), p. 451-460, doi: 10.1016/j.jpdc.2009.01.006 (2009).

David Michéa and Dimitri Komatitsch, Accelerating a 3D finite-difference wave propagation
code using GPU graphics cards, Geophysical Journal International, vol. 182(1), p. 389-402,
doi: 10.1111/j.1365-246X.2010.04616.x, (2010).

Thank you
for your attention

SLIDES
FOR
QUESTIONS

Brief history of numerical
methods
Seismic wave equation : tremendous increase of computational power
⇒ development of numerical methods for accurate calculation of synthetic

seismograms in complex 3D geological models has been a continuous effort in
last 30 years.

Finite-difference methods : Yee 1966, Chorin 1968, Alterman and Karal 1968,
Madariaga 1976, Virieux 1986, Moczo et al, Olsen et al..., difficult for
boundary conditions, surface waves, topography, full Earth

Boundary-element or boundary-integral methods (Kawase 1988, Sanchez-Sesma
et al. 1991) : homogeneous layers, expensive in 3D

Spectral and pseudo-spectral methods (Carcione 1990) : smooth media, difficult
for boundary conditions, difficult on parallel computers

Classical finite-element methods (Lysmer and Drake 1972, Marfurt 1984, Bielak
et al 1998) : linear systems, large amount of numerical dispersion

Let us combine the advantages of the last two techniques.

Final mesh of the Earth

 “Gnomonic” mapping (Sadourny 1972)

 Ronchi et al. (1996), Chaljub (2000)

 Analytical mapping from six faces of cube
to unit sphere

BLAS 3 (Basic Linear Algebra
Subroutines)

Can we use highly optimized BLAS matrix/matrix products (90% of computations)?

For one element: matrices (5x25, 25x5, 5 x matrices of (5x5)), BLAS is not efficient:
overhead is too expensive for matrices smaller than 20 to 30 square.

If we build big matrices by appending several elements, we have to build 3 matrices,
each having a main direction (x,y,z), which causes a lot of cache misses due to the
global access because the elements are taken in different orders, thus destroying
spatial locality.

Since all arrays are static, the compiler already produces a very well optimized code.

5x 5 x NDIM x Nb elem ...
5

5
5

=> No need to, and cannot easily use BLAS

=> Compiler already does an excellent job for small static loops

Global Simulations: SPECFEM3D_GLOBE
Open source: geodynamics.org

On-demand TeraGrid applications:
• Automated, near real-time simulations of all M>6

 earthquakes
• Analysis of past events (more than 20,000 events)
• Seismology Web Portal (geodynamics.org)

Petascale simulations:
• Global simulations at 1-2 Hz
• Reached 1.15 s period on 149,784 cores at ORNL
• Moving towards global ‘adjoint tomography’

SPECFEM3D_GLOBE Users Map

Princeton University +
Barcelona Supercomputing
Center

Finite elements

 High-degree pseudospectral
 finite elements

 N = 4 to 12 usually
 Exactly Diagonal mass
matrix
 No linear system to invert

Differential or strongstrong form (e.g., finite differences):

fΤ s +⋅∇=∂2
tρ

We solve the integral or weakweak form:

∫∫ ∇−=∂⋅ rΤ:wrsw 332 ddt ρ

() () rnΤwrw:Μ 2

S F
d ˆ s ⋅⋅−∇+ ∫ −

tS

Equations of motion (solid)

+ attenuation (memory variables) if needed for viscoelasticity.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

