1D MODEL, 2D DOMAIN, 3D WAVES: AXISYMMETRIC SPECTRAL-ELEMENT METHOD

Tarje Nissen-Meyer ETH Zürich, Switzerland

1st QUEST workshop Capo Caccia, Sardegna

September 23, 2010

Computational grand challenges

Problem	f[Hz]	$\Delta[\lambda^{-1}]$	DOF	$\operatorname{RAM}[GB]$
hydrofracture monitoring	150	150	5×10^7	10
exploration seismology	30	300	2×10^9	300
seismic hazard	3	100	4×10^7	6
global body waves	0.15	300	2×10^9	300
multiple-orbit surface waves	0.005	150	4×10^8	70

Need: Accurate simulations for >100 wavelengths at all frequencies across the seismic spectrum

Performance-based design

Given an error tolerance, find scheme to minimize CPU time & memory

Example: Major-arc Rayleigh wave (R2)

- Epicentral distances up to 330°,
- Dominant period $\approx 70 175$ seconds,
- Average phase velocity 4 km/s,
- \Rightarrow propagation distances 5-130 wavelengths,
- Observational uncertainties: 3-20 % of the period,
- Synthetics one order of magnitude more accurate.
- \Rightarrow Error tolerance: $\epsilon = 10^{-3}$ at 130 wavelengths distance.

Task: Find scheme that meets these criteria with least cost

2. A forward problem:

Solving (an)isotropic (an)elasto-acousto-dynamics at high resolution at the global scale

"Exact" Fréchet derivatives?

How about non-geometric phenomena such as diffracted or caustics?

(Nissen-Meyer et al., 2007)

"Exact seismic sensitivity":

- Inclusion of full-wave effects ?,
- Covering all frequencies of high-quality broadband data.

 \Rightarrow Full-wave solution necessary

2D Earth

 \Rightarrow 3-D integral form upon a **2-D computational domain**

1D model, 2D domain, 3D waves

Space discretization

Generally:

Analytical mapping, Gauss-Lobatto-Legendre basis

Axis treatment:

- s^{-1} ingularities \Rightarrow G-L-Jacobi basis, l'Hospital's rule
- Essential axial boundary conditions \Rightarrow explicit masking

Source:

- Located along the axis
- Moment tensor: decomposed into 4 separate solutions
- Receiver components: decomposed into 2 solutions

Spectral convergence

The frequency-domain elastostatic weak wave equation,

$$\mathbf{K}\mathbf{u} = {}_{n}\omega_{l}^{2}\mathbf{M}\mathbf{u},$$

with eigenfrequency ${}_{n}\omega_{l}$ of degree l and overtone n, is satisfied by **toroidal eigenfunctions** ${}_{n}\mathbf{u}_{l}$.

Time discretization

Temporal ODE system of the discretized weak form: $\mathbf{M}\ddot{\mathbf{u}}(t) + \mathbf{K}\mathbf{u}(t) = \mathbf{F}(t)$

 \mathcal{O}^4 symplectic scheme: 4-fold force evaluation per Δt

 \Rightarrow Symplectic scheme more cost-effective

Total energy conservation

Debugged: √

3. Applications & Projects:

 $P_{\rm diff}$, v_p/v_s , heterogeneous models

I. Forward synthetics

Mesh resolution: $T_0 = 9 \text{ s}$, 721500 grid points, 35000 time steps.

II. Heterogeneities & hi-res waveform

ULVZ's: ScP

(with Jensen & Thorne)

ULVZ's: ScP

(with Jensen & Thorne)

 $G(\mathbf{x}_s, \mathbf{x}_r; t)$ applications: \checkmark

3b. Seismic sensitivity:

Forward methods: $\mathcal{F} : m_0 \to d_0$ Inverse methods: $\mathcal{F}^{-1} : d \to m$ Fréchet derivatives

Spatio-temporal sensitivity kernels

Time: 1250 seconds Epicentral distance: 120 degrees

Spatio-temporal sensitivity kernels

Spatio-temporal sensitivity kernels

$K_1(\mathbf{x}, t)$: Seismogram & structure

(Nissen-Meyer & Fournier, to be submitted)

..... and the Hessian!

$K_2(\mathbf{x},t)$: Born in ω space

$K_3(\mathbf{x}, t)$: is sensitive: $\Delta = 127^{\circ}$

$K_3(\mathbf{x}, t)$: is sensitive: $\Delta = 112^{\circ}$

$K_3(\mathbf{x}, t)$: is sensitive: $\Delta = 112^{\circ}$

$K_3(\mathbf{x}, t)$: is sensitive: $\Delta = 112^{\circ}$

$K_4(\mathbf{x},t)$: kernel of measure-kernels

- \Rightarrow Select observable time window (t_1, t_2)
- \Rightarrow Integrate waveform Fréchet derivative and seismogram:

• $K(\mathbf{x}, t)$ independent of data selection!

Data & SEM: core diffraction

(Nissen-Meyer & Sigloch, in preparation)

$K_5(\mathbf{x},t)$: Born modeling

2 deliverables

Forward solution $G(x_s, x_r; t)$

- 3D wavefields upon 2D SEM in 1D models
- Heterogeneities: High-frequency full-wave modeling

Spatio-temporal kernel-kernel K(x,t)

- Seismogram $(t) \sim \text{structural sensitivity}(\mathbf{x}, t)$
- Sensitivity of kernels:

source mechanism, distance, frequency, receiver components, time window, misfit function, ...

- Frequency-domain manipulation: Filtering, convolution
- Pre-data database: Efficient basis for global tomography
- Hessian
- Born again: Synthetics upon tomographic 3D models

Coding

What makes a technique/implementation **popular**?

- favorable cost-error function at various settings
- inclusion of relevant complexity in model and physics
- flexibility to change/add anything (e.g., models)
- code simplicity (readability, good examples)
- availability (open-source, feedback, manual)
- promotion (publications, talks)

How to make it scientifically relevant?

- Communicate with data-driven colleagues
- Clearly state the realm of advantageous applications