Project GLOBALSEIS

Geoazur (Nice, France)

Jean Charlety, Michel Foundotos, Catherine Gourdin, Yann Hello, Marianne Marot, Diego Mercerat, Guust Nolet, Masayuki Obayashi, Anthony Ogé, Bernhard Schuberth, Laurent Stehly, Alexey Sukhovich, Christophe Zaroli.

The past (Dziewonski et al., 1977)

The past (Masters et al., 2000)

Present (Sigloch et al., 2008)

The future

I. Move away from ray theory
2. Include amplitudes (or full waveforms)
3. Super-arrays
4. New inversion techniques
5. Ocean coverage with robots
6. Web services for data

Project Globalseis

I. Move away from ray theory
2. Include amplitudes (or waveforms)
3. Super-arrays
4. New inversion techniques
5. Ocean coverage with robots
6. Web services for data

Software

https://www.geoazur.net/GLOBALSEIS/Soft.html

Raydyntrace: dynamic ray tracing in a spherical Earth

BD3D: dynamic ray tracing and kernel computation in local models (Cartesian coordinates).

BD3D (Cartesian)

- Computes travel time fields in 3D by ray bending
- Computes geometrical spreading fields
- Computes time and amplitude kernels

Extensive tutorial still in progress....

BD3D (Cartesian)

- Computes travel time fields in 3D by ray bending
- Computes geometrical spreading fields
- Computes time and amplitude kernels

Extensive tutorial still in progress....

Current Globalseis efforts

Cubed Earth

+ Frederik Simons, Ignace Loris and Ingrid Daubechies

Dense parameterization in a cubed Earth

Goal: $6 \times 512 \times 512 \times 128=$
2×10^{8} for mantle (20 km resolution)

Currently:
$6 \times 128 \times 128 \times 37=$
$3.6 \times 10^{6}(80 \mathrm{~km})$

4. New inversion techniques

Figure 4: From left to right: A toy model for the East-African rift, with stations (triangles) and events (circles); reconstruction with ℓ_{1}-method; reconstruction with ℓ_{2}-method; reconstruction with wavelet ℓ_{2}-method.

Loris et al., GJI 2007

Figure 6: A graph of the 2D dual-tree complex wavelets used in the reconstruction. First row: real part, second row: imaginary part, third row: norm squared (figure taken/adapted from [24]). The directional character of each of the six wavelet functions is clear.

New data

ARGOS: 3000 floats for oceanography

Float Positions: 02-Apr-2008

Zooming in on the onset

Courtesy Frederik Simons

Mermaids

Cruising depth to 2000 m

Lifetime about 3
years

Expected to get good signal for magnitudes 5.8 and higher (100 per year, about $\$ 60$ per P wave)

