
Hardware architecture
and

basics of parallel computing

Gian Franco Marras
g.marras@cineca.it

Dipartimento Supercalcolo, Applicazioni e Innovazione (SCAI)
 CINECA - High Performance System Group

Casalecchio di Reno (BO) – Italy
www.cineca.it - www.cineca.it/en/index.htm

mailto:g.marras@cineca.it
http://www.cineca.it/

Outline

• Parallel Architectures & Parallel Programming

• Message Passing Interface
• Point-point comunication
• Collective comunication

• OpenMP
• Directives
• Runtime Library Routines
• Environment Variables

Parallel Architectures and Parallel
Programming

An overview

What is a Supercomputer?

A supercomputer is a computer that is at the
frontline of current processing capacity,
particulary speed of calculation.

Supercomputers are used for highly calculation-
intensive tasks such as problems involving
quantum physics, weather forecasting, climate
research, molecular modeling, physical
simulations and a particular class of problems,
known as Grand Challenge problems.

What is Grand Challenge Problem?

A grand challenge is a fundamental problem in
science or engineering, with broad applications,
whose solution would be enabled by the
application of high performance computing
resources that could become available in the
near future.

Which are Grand Challenges today?

• Prediction of weather and global change
• Material science and Superconductivity
• Structural biology
• Human genome
• Astronomy
• Turbolence
• Design of hypersonic aircraft
• Geophysics
• ...

Parallel computing

Parallel computing is a form of computation in
which many calculations are carried out
simultaneously, operating on the principle that
large problems can often be divided into smaller
ones, which are then solved concurrently.

Parallelism has been employed for many years,
mainly in high-performance computing

High-performance computer

High-performance computing uses
supercomputers and computer clusters to solve
advanced computation problems.
A list of the most powerfull HPC can be found on
the TOP500 list (www.top500.org)

The TOP500 list ranks the world's 500 fastest
high-performance computers, as measured by
the High Performance Linpack (HPL) benchmark.

http://www.top500.org/

LINPACK benchmark
• LINPACK is a software library for performing

numerical linear algebra on digital computers. It
was written in Fortran.

• LINPACK use BLAS libraries for performing basic
vector and matrix operations.

• The LINPACK Benchmarks measure how fast a
computer solves a dense N by N system of linear
equations Ax = b

• The result is reported in millions of floating point
operations per second (MFLOP/s or FLOPS).

Computers & Von Neumann architecture
A computer is a programmable machine that
receives input, stores and manipulates data
and instructions, and provides output in a
useful format. The von Neumann architecture is
a design model for a stored-program digital
computer that uses a central
processing unit (CPU)
and a single separate
storage structure
("memory") to
hold both instructions
and data.

Control

Input Memory Output

ALU

Von Neumann bottleneck
In most modern computers, throughput (data
transfer rate) is much smaller than the rate at
which the CPU can work.
The CPU is continuously forced to wait for needed
data to be transferred to or from memory.
The performance problem can be alleviated
providing one or more cache between the CPU
and the main memory (Memory hierarchy).

CPU RAM

Moore Law
The number of transistors that can be placed
inexpensively on an integrated circuit has
doubled approximately every 18 months. The
trend has continued for more than half a
century and is not expected to stop until 2015
or later.

Memory's performance
has doubled
every 6 years.

Time

Pe
rf
or
m
an
ce Processor

Memory

Gap

Cache
The system cache is responsible for a great
deal of the system performance improvement
of today's PCs.
The cache is a buffer of sorts between the very
fast processor and the relatively slow memory
that serves it.
The presence of the cache allows the processor
to do its work while waiting for memory far less
often than it otherwise would.

Principle of locality

A hierarchical memory system is efficient if the
mode of data access are predictable.

• Temporal locality: if at one point in time a
particular memory location is referenced, then it is
likely that the same location will be referenced
again in the near future.

• Spatial locality: if a particular memory location is
referenced at a particular time, then it is likely
that nearby memory locations will be referenced in
the near future.

Cache Memory

• Temporal locality example:

do i=1, n
 a(i) = b(i) + 1.0
enddo
do i=2, n
 c(i) = sqrt(a(i-1))
enddo

Loop Fusion
do i=1, n-1
 a(i) = b(i) + 1.0
 c(i+1) = sqrt(a(i))
enddo
a(n) = b(n) + 1.0

Cache Memory

• Spatial locality example:

do i=1, n
 do j=1, n
 a(i,j)=b(i,j)+ 1.0
 enddo
enddo

Loop Interchange
do j=1, n
 do i=1, n
 a(i,j) = b(i,j) + 1.0
 enddo
enddo

In Fortran the 2-dim arrays are stored by colomn.

Memory hierarchy

Latency Size

●Processor registers
1 CPU cycle 1 kbytes

●Level 1 (L1) cache 1~10 cycles ~128 kbytes
●Level 2 (L2) cache 2x to 10x L1 512 KB or

more
●Level 3 (L3) cache Higher latency 2048 KB or

more
●Main memory Hundreds of cycle Multiple GB

●Disk storage Millions of cycles Multiple GB-TB

Modern Parallel Architectures

Basic architectural schemes:

 Shared Memory

Distributed Memory

Nowadays most of the computer systems
implements mixed architectures

Shared Memory System

Shared memory concept refers to a (typically)
large block of RAM that can be accessed by
several different CPUs at the same time in a
multiple-processor environment.

A shared memory System offers a single
memory space accesible by all processors.

Shared Memory

CPU

memory

CPU CPU CPU CPU

Distributed Memory System

Distributed memory concept refers to a
multiple processor computer system where
each processor has its own private memory.

Computational tasks can access only local
data, and if any remote data is required, it
must request them to remote processors.

Computers are interconnected by
communication channels that facilitate
communications and allows to share data.

Distributed Memory

memory

CPU

memory

CPU

memory

CPU

memory

NETWORK

CPU

memory

CPU

memory

CPU

n
o
d
e

n
o
d
e

n
o
d
e

n
o
d
e

n
o
d
e

n
o
d
e

Most Common Networks
Cube, hypercube, n-cube

Torus in 1,2,...,N Dim

switch

switched

Fat Tree

Distribute Memory Architectures

CPU

memory

CPU

CPU

memory

CPU

CPU

memory

CPU

NETWORK

node

node

node

Logical Machine Organization

The logical organization, seen by the
programmer, could be different from the
hardware architecture.

Its quite easy to logically partition a Shared
Memory computer to reproduce a
Distributed memory Computers.

The opposite is not true.

Parallel Programming Paradigms

The two architectures determine two basic
scheme for parallel programming

Message Passing (distributed memory)
 all processes could directly access only their

local memory; Sharing of data takes by
explicitly sending and receiving data between
processes.

 Data Parallel (shared memory)
all processes (usually threads) could directly
access the whole memory;

Parallel Programming Paradigms, cont.

Standard Unix shell to run the
program

Ad hoc commands to run the
program

Source code DirectiveCommunication Libraries

Ad hoc compilersStandard compilers

Standards: OpenMPStandards: MPI

Data ParallelMessage Passing

Programming Environments

Architectures vs. Paradigms

Shared Memory
Computers Distributed Memory

Computers

Message Passing

Data Parallel
Message Passing

Clusters of Shared Memory Nodes

Parallel programming Models
for applications designing

Domain decomposition
Data are divided into pieces of approximately the same size and

mapped to different processors. Each processors work only on
its local data. The resulting code has a single flow.

Functional decomposition
The problem is decompose into a large number of smaller tasks

and then the tasks are assigned to processors as they become
available, Client-Server / Master-Slave paradigm.

...two basic models

Important Designing Clues

When writing a parallel code, regardless of the
architecture, programming model and
paradigm, be always aware of

• Load Balancing

• Minimizing Communication

• Overlapping Communication and Computation

Load Balancing
Equally divide the work among the available

resource: processors, memory, network
bandwidth, I/O, ...

This is usually a simple task for the problem
decomposition model

It is a difficult task for the functional
decomposition model

Minimizing Communication

When possible reduce the communication
events:

Group lots of small communications into large
one.

Eliminate synchronizations as much as
possible. Each synchronization level off the
performance to that of the slowest process.

Overlap Communication and
Computation

When possible code your program in such a
way that processes continue to do useful
work while communicating.

This is usually a non trivial task and is
afforded in the very last phase of
parallelization.

This is possible with asynchronous
communication.

If you succeed, you have done. Benefits are
enormous.

Scalability
It's refered to the capability of a system to

increase performance under an increased
load when resources are added.

A system whose performance improves after
adding hardware, proportionally to the
capacity added, is said to be a scalable
system.

Measures:
• Speed Up
• Efficiency
• Amdhal's Law

Speedup
Refers to how much a parallel algorithm is faster

than a corresponding sequential algorithm.
 Sp=Ts / Tp

where:
• p is the number of

processors
• Ts is the execution

time of the sequential
algorithm

• Tp is the execution
time of the parallel
algorithm with
p processors

Linear speedup is obtained when Sp = p.

S
p
ee

d
u
p

P

Linear

Real

Efficiency
 Ep = Sp / P = Ts / PTp

It is a value, typically between 0 and 1.
It estimates how well-utilized the processors are in

solving the problem, compared to how much
effort is wasted in communication and
synchronization.

Amdhal's Law
It is used to predict the theoretical maximum

speedup using multiple processors.

 Tp(W,p)=Ts (W) fs + (Ts(W) fp / p)
where:
• p is the number of processors;
• Ts is the execution time of the sequential

algorithm;
• Tp is the execution time of the parallel

algorithm with p processors;
• fs is the part that cannot be made parallel;
• fp = 1-fs is the fraction of time that be made parallel.

Speedup =1 / ((1 - fp) + fp / p)

Amdhal's Law
Amdhal's Law can be usefull for analize the

scalability of a parallel system.

Maximun speedup <= p / (1 + fs (p - 1))

Es: fs = 0.05 ---> Max_speedup = 20 ~ 1/fs

	Pagina 1
	Pagina 2
	Pagina 3
	Pagina 4
	Pagina 5
	Pagina 6
	Pagina 7
	Pagina 8
	Pagina 9
	Pagina 10
	Pagina 11
	Pagina 12
	Pagina 13
	Pagina 14
	Pagina 15
	Pagina 16
	Pagina 17
	Pagina 18
	Pagina 19
	Pagina 20
	Pagina 21
	Pagina 22
	Pagina 23
	Pagina 24
	Pagina 25
	Pagina 26
	Pagina 27
	Pagina 28
	Pagina 29
	Pagina 30
	Pagina 31
	Pagina 32
	Pagina 33
	Pagina 34
	Pagina 35
	Pagina 36
	Pagina 37
	Pagina 38
	Pagina 39

