
OpenMP basics:
Communication within a node

Gian Franco Marras
g.marras@cineca.it

Dipartimento Supercalcolo, Applicazioni e Innovazione (SCAI)
 CINECA - High Performance System Group

Casalecchio di Reno (BO) – Italy
www.cineca.it

mailto:g.marras@cineca.it

Shared Memory System

Shared memory refers to a large block of RAM
that can be accessed by several different
CPUs in a multiple-processor computer
system.

Usually the system is a Simmetric
MultiProcessor (SMP). SMP involves a
multiprocessor computer hardware
architecture where two or more identical
processors are connected to a single shared
main memory.

The OpenMP Application Program Interface (API)
supports multi-platform shared-memory parallel
programming in C/C++ and Fortran on all
architectures, including Unix platforms and
Windows NT platforms.

OpenMP is a portable, scalable model that gives
shared-memory parallel programmers a simple
and flexible interface for developing parallel
applications for platforms ranging from the
desktop to the supercomputer.

Pros of OpenMP
• easier to program and debug;
• directives can be added incrementally;
• gradual parallelization;
• can still run the program as a serial code;
• serial code statements usually don't need

modification.

Cons of OpenMP
• can only be run in shared memory computers;
• Traffic between CPU and memory increases with the

number of CPUs;

OpenMP consists of a set of:

• Compiler directives

• Runtime library routines

• Environment variables

The OpenMP API uses the fork-join model of parallel
execution.

An OpenMP program begins as a single thread of
execution, called the initial thread. The initial
thread executes sequentially until encounters a
parallel construct.

The thread creates a team of tasks and becomes
the master of the new team. Each task is
assigned to a different thread in the team and
becomes tied. Beyond the end of the parallel
construct, only the master thread resume
execution.

OpenMP supports dynamic adjustment of the
number of thread:

C o nditio na l C o m pila tio n
With OpenMP compilation, the _OPENMP macro is defined.
C :
#ifd e f _O P E N M P
printf("Compiled by OpenMP);
#e ls e
printf("Compiled by an Serial-compliant
implementation.");
#e n d i f

F o rtra n:
! $ p rin t *,”C o m p ile d b y O p e n M P ”

Parallel construct

• Start parallel execution;
• A team of threads is created to execute the

parallel region;
• The thread that encountered the parallel

construct become the master thread of the new
team with a thread number zero.

• There is an implicit barrier at the end of the
construct;

• Any number of parallel constructs can be
specified in a single program;

A firs t pro g ra m in F o rtra n:

PROGRAM HELLO
INTEGER VAR1, VAR2, VAR3
!S e ria l c o d e
!B e g in n in g o f p a ra lle l re g io n .
!F o rk a te a m o f th re a d s .
!S p e c ify v a ria b le s c o p in g .
! $ O M P P A R A L L E L P R I V A T E (V A R 1 , V A R 2) S H A R E D (V A R 3)
 P rin t *, “He llo W o rld !!!”
! $ O M P E N D P A R A L L E L
!R e s u m e s e ria l c o d e

END

A firs t pro g ra m in C :

#include <omp.h>
int main ()
{
 int var1, var2, var3;
 S e ria l c o d e
! B e g in n in g o f p a ra lle l re g io n . F o rk a te a m o f th re a d s .
! S p e c ify v a ria b le s c o p in g
#p r a g m a o m p p a r a l le l p r iv a te (v a r 1 , v a r 2) s h a r e d (v a r 3)
 {
P a ra lle l s e c tio n e x e c u te d b y a ll th re a d s
A ll th re a d s jo in m a s te r th re a d a n d d is b a n d
 }
!R e s u m e s e ria l c o d e
}

OpenMP Memory Model

OpenMP provides a consistency shared-memory
model. All threads have access to the main
memory to retrieve shared variables.

Each thread also has access to another type of
memory that must not be accessed by another
threads, called threadprivate memory.

A directive that accepts data-sharing attribute
clauses determines two kinds of access to
variables used in the directive’s associated
structured block: shared and private.

Data-Sharing Attribute Clauses

• Shared:declares one or more list items to be
shared by tasks generated by a parallel construct.
All changes made are visible to all threads.

• Private: declares one or more list items to be
private to a task.
No other thread can access this data.
Changes can only visible to the thread owning the
data.

Worksharing construct
A worksharing construct distributes the execution
of the associated region among the members of
the team that encounters it.
A worksharing region has no barrier on entry;
however, an implied barrier exists at the end of
the worksharing region.
If a nowait clause is present, an implementation
may omit the barrier at the end of the
worksharing region.

• Loop construct (DO / for)
• SECTIONS construct
• SINGLE construct
• WORKSHARE construct (only Fortran90)

Loop construct (DO/for)
The loop construct specifies that the iterations
of one or more associated loops will be
executed in parallel by threads in the team in
the context of their implicit tasks. The
iterations are distributed across threads that
already exist in the team executing the parallel
region to which the loop region binds.

Loop construct (DO/for)

Fortran:
!$OMP PARALLEL
integer :: i=5,n=200
real :: tmp
!$OMP DO PRIVATE(tmp)
d o i=1, n
 tm p = fu n c (b (i))
 a (i) = b (i) + tm p
e n d d o
!$OMP END DO [NOWAIT]
print *, i !(→ 5)
!$OMP END PARALLEL

OpenMP Memory Model

Fortran:
!$OMP PARALLEL
integer :: i=5,n=200
real :: tmp
!$OMP DO PRIVATE(tmp)
d o i=1, n
 tm p = fu n c (b (i))
 a (i) = b (i) + tm p
e n d d o
!$OMP END DO [NOWAIT]
print *, i !(→ 5)
!$OMP END PARALLEL

Loop construct (DO/for)

C/C++:

#pragma omp parallel
{
…
#pragma omp for [nowait]
fo r (i=0;i<n ;++i)
 a [i] = b [i] + 1.0
…
}

Schedule clauses
Specifies how iterations of the associated loops are
divided into contiguous non-empty subsets, called
chunks, and how these chunks are distributed among
threads of the team.
• S ta ti c : iterations are divided into chunks of size

chunk_size, and the chunks are assigned to the
threads in the team in a round-robin fashion in the
order of the thread number.

• D y n a m ic : iterations are distributed to threads in the
team in chunks as the threads request them. Each
thread executes a chunk of iterations, then requests
another chunk, until no chunks remain to be
distributed.

$ o m p p a r a l le l d o s c h e d u le (ty p e , [c h u n k])

Schedule clauses

• G u id e d : the iterations are assigned to threads in the
team in chunks as the executing threads request
them. Each thread executes a chunk of iterations,
then requests another chunk, until no chunks remain
to be assigned. The chunk decrease with time.

• R u n tim e : the decision regarding scheduling is
deferred until run time.

• A u to : the decision regarding scheduling is delegated
to the compiler and/or runtime system.

$ o m p p a r a l le l d o s c h e d u le (ty p e , [c h u n k])

Schedule clauses

Environment Variables

• OMP_NUM_THREADS: sets the number
of threads to use for parallel regions;

• OMP_SCHEDULE: controls the schedule
type and chunk size of all loop directives
that have the schedule type runtime.

c s h :
% setenv OMP_NUM_THREADS 8
% setenv OMP_SCHEDULE "guided,4"

s h :
$ export OMP_NUM_THREADS=8
$ export OMP_SCHEDULE=”guided,4”

Runtime Libraries Routines

OpenMP provides several user-callable function
to control and query parallel environment.

• The Runtime Libraries take precedence over
the corrisponding environment variables;

• Recommended to use under control of
conditional compilation (#ifdef _OPENMP);

• C/C++ programs need to include <omp.h>;
• Fortran program may want to use “USE

OMP_LIB” or include “omp_lib.h”.

Runtime Libraries Routines

• omp_set_num_threads(n):
Sets number of threads;

• n=omp_get_num_threads():
Gets number of threads in team;

• omp_set_schedule(sched,chunk):
Sets schedule and chunk;

• n=omp_get_thread_num():
Gets thread ID;

OpenMP Compiler

GNU (Version >= 4.3.2) Compile with -fopenmp
 For Linux, Solaris, AIX, MacOSX, Windows:

IBM Compile with -qsmp=omp for Windows, AIX and Linux.

Sun Microsystems
 Compile with -xopenmp for Solaris and Linux.

Intel
Compile with -Qopenmp on Windows, or just -openmp on Linux or

Mac

Portland Group Compilers
Compile with -mp

 Emit useful information to stderr. -Minfo=mp

Workshare: Sections construct

The sections construct is a noniterative
worksharing construct that contains a set of
structured blocks that are to be distributed
among and executed by the threads in a
team.

Workshare: Sections construct
Fortran:
!$OMP PARALLEL
…
!$OMP SECTIONS
!$OMP SECTION
c a ll s u b r_A (c ,d)
!$O M P S E C T IO N
c a ll s u b r_B (e ,f)
!$O M P S E C T IO N
c a ll s u b r_c (g ,h ,i)
!$OMP END SECTIONS
…
!$OMP END PARALLEL

Workshare: Sections construct
C/C++:
#pragma omp parallel
{
…
#pragma omp sections
{
#pragma omp section
A =s u b r_A (c ,d)
#p ra g m a o m p s e c tio n
B =s u b r_B (e ,f)
#p ra g m a o m p s e c tio n
C =s u b r_c (g ,h ,i)
}
…
}

Workshare: Single construct
The single construct specifies that the
associated structured block is executed by
only one of the threads in the team (not
necessarily the master thread).
The other threads in the team, which do
not execute the block, wait at an
implicit barrier at the end of the
single construct unless a nowait
clause is specified.

Workshare: Single construct
Fortran:
!$OMP PARALLEL
…
!$OMP SINGLE
re a d *, a
!$O M P E N D S IN G L E
…
!$OMP END PARALLEL

Workshare: Single construct
C/C++:
#pragma omp parallel
{
…
#pragma omp single
printf(“Beginning work”);
…
}

Sinchronization constructs

• Master;
• Critical;
• Atomic;
• Barrier;
• Ordered;

Master construct
The master construct specifies a structured
block that is executed by the master thread
of the team.
There is no implied barrier either on entry
to, or exit from, the master construct.

Fortran:
!$OMP PARALLEL
…
!$OMP MASTER
re a d *, a
!$O M P E N D M A S T E R
…
!$OMP END PARALLEL

Master construct

C/C++:
#pragma omp parallel
{
…
#pragma omp master
printf(“Beginning work”);
…
}

Critical construct
The critical construct restricts execution of the
associated structured block to a single thread at
a time. An optional name may be used to
identify the critical construct.

Fortran:
!$OMP PARALLEL
…
!$OMP CRITICAL [NAME]
X =F U N C _A (X)
!$O M P E N D C R IT IC A L
…
!$OMP END PARALLEL

Critical construct

C/C++:
#pragma omp parallel
{
…
#pragma omp critical [name]
x=subr_A(x)
…
}

Barrier construct
The barrier construct specifies an explicit barrier
at the point at which the construct appears.

Fortran:
!$OMP PARALLEL
…
X =F U N C _A (X)
!$O M P B A R R IE R
…
!$OMP END PARALLEL

Barrier construct
The barrier construct specifies an explicit barrier
at the point at which the construct appears.

C/C++:
#pragma omp parallel
{
…
x=subr_A(x)
#pragma omp barrier
…
}

Atomic construct
The atomic construct ensures that a specific
storage location is updated atomically, rather
than exposing it to the possibility of multiple,
simultaneous writing threads.

Fortran:
!$OMP PARALLEL
…
!$O M P A T O M IC
X =X +1
…
!$OMP END PARALLEL

Atomic construct
The atomic construct ensures that a specific
storage location is updated atomically, rather
than exposing it to the possibility of multiple,
simultaneous writing threads.

C/C++:
#pragma omp parallel
{
…
#pragma omp atomic
x++;
…
}

Ordered construct
The ordered construct specifies a structured
block in a loop region that will be executed in the
order of the loop iterations. This sequentializes
and orders the code within an ordered region
while allowing code outside the region to run in
parallel.

Ordered construct

Fortran:
!$OMP PARALLEL
!$OMP DO ORDERED
D O i=1,N
 A (i)=...
!$O M P O R D E R E D
 P R IN T *,a (i)
!$O M P E N D O R D E R E D
E N D D O
!$O M P E N D D O O R D E R E D
!$OMP END PARALLEL

Ordered construct
C/C++:

#pragma omp parallel
{
…
#pragma omp for ordered
for (i=0;i<n;++i)
 a[i] = b[i] + 1.0
#pragma omp ordered
{
 printf(“%f\n”,a[i]);
}
…
}

Data-Sharing Attribute Clauses

• Shared:declares one or more list items to be
shared by tasks generated by a parallel construct.

• Private: declares one or more list items to be
private to a task.

• Firstprivate: declares one or more list items to
be private to a task, and initializes each of them
with the value that the corresponding original
item has when the construct is encountered.

Data-Sharing Attribute Clauses

Lastprivate: declares one or more list items to
be private to an implicit task, and causes the
corresponding original list item to be updated
after the end of the region.

!$omp do lastprivate (i)
do i = 1,n-1
 a(i) = b(i+1)
enddo
!$omp end do
a(i) = b(0)

Data-Sharing Attribute Clauses
Reduction: The reduction clause specifies an
operator and one or more list items. For each list
item, a private copy is created in each implicit
task, and is initialized appropriately for the
operator. After the end of the region, the original
list item is updated with the values of the private
copies using the specified operator.

!$omp do reduction (+:x)
do i = 1,n
 x = x + a(i)
enddo
!$omp end do
Support for most airthmetic and logical operators
+, *, -, .MIN., .MAX., . AND., .OR., ...

	Pagina 1
	Pagina 2
	Pagina 3
	Pagina 4
	Pagina 5
	Pagina 6
	Pagina 7
	Pagina 8
	Pagina 9
	Pagina 10
	Pagina 11
	Pagina 12
	Pagina 13
	Pagina 14
	Pagina 15
	Pagina 16
	Pagina 17
	Pagina 18
	Pagina 19
	Pagina 20
	Pagina 21
	Pagina 22
	Pagina 23
	Pagina 24
	Pagina 25
	Pagina 26
	Pagina 27
	Pagina 28
	Pagina 29
	Pagina 30
	Pagina 31
	Pagina 32
	Pagina 33
	Pagina 34
	Pagina 35
	Pagina 36
	Pagina 37
	Pagina 38
	Pagina 39
	Pagina 40
	Pagina 41
	Pagina 42
	Pagina 43
	Pagina 44
	Pagina 45
	Pagina 46

