1st QUEST Workshop, 19-25 September 2010, Capo Caccia, Sardinia

Comparison of Accuracy of the FDM, FEM, SEM and DGM

Peter Moczo Jozef Kristek Martin Galis Emmanuel Chaljub Vincent Etienne

Comenius University Bratislava, Slovakia LGIT Université Joseph Fourier Grenoble, France GEOAZUR, Université de Nice, France

the overall accuracy of a numerical scheme

for a given space-time grid depends mainly on accuracy

- in
 - a homogeneous medium
 - V_P/V_S ratio
 - a smoothly spatially varying medium spatial variability of material parameters

the overall accuracy of a numerical scheme

for a given space-time grid depends mainly on accuracy

- in
 - a homogeneous medium
 - V_P/V_S ratio
 - a smoothly spatially varying medium spatial variability of material parameters
- at
 - a material interface
 - geometry, continuity of displacement and traction
 - a free surface
 - geometry, zero traction

the overall accuracy of a numerical scheme

for a given space-time grid depends mainly on accuracy

- in
 - a homogeneous medium
 - V_P/V_S ratio
 - a smoothly spatially varying medium spatial variability of material parameters
- at
 - a material interface
 - geometry, continuity of displacement and traction
 - a free surface
 - geometry, zero traction
- of
 - a grid boundary
 - transparency or symmetry
 - simulation of source
 - location, mechanism, time function
 - incorporation of attenuation
 - frequency dependence, spatial variability

here we focus only on the accuracy in the homogeneous medium and, specifically,

on the accuracy with respect to V_P/V_S ratio

why?

because in surface sediments and, mainly, in sedimentary basins and valleys often $V_P/V_S > 5$

spatial grids

conventional

$$\bullet \ u_x, u_y, u_z$$

spatial grids

partly conventional staggered

h \cap 0 \bigcirc

• u_x, u_y, u_z • u_x, u_y, u_z

$$\overset{\sigma_{xx}, \sigma_{yy}, \sigma_{zz}}{\overset{\sigma_{xy}, \sigma_{yz}, \sigma_{zx}}{\overset{\sigma_{xy}, \sigma_{yz}, \sigma_{zx}}} }$$

3D numerical schemes						
method		equation formulation	grid	add. specif.	order	
FDDCG2		displacement	conventional			
FD DS PSG 2	finite- difference	displacement -stress	partly staggered			
FD DS SG 2		displacement -stress	staggered			

3D numerical schemes					
method		equation formulation	grid	add. specif.	order
FDDCG2	finite- difference	displacement	conventional		
FD DS PSG 2		displacement -stress	partly staggered		
FD DS SG 2		displacement -stress	staggered		
FE L8	finite- element			Lobatto 8-point integr.	2
FE G1		displacement	conventional Gauss 1-point integ Gauss 8-point integ	Gauss 1-point integr.	
FE G8				Gauss 8-point integr.	

3D numerical schemes					
method		equation formulation	grid	add. specif.	order
FDD CG2	finite- difference	displacement	conventional		
		displacement	partly		
		-stress	staggered		
FD DS SG 2		displacement -stress	staggered		
FE L8	finite- element	displacement	conventional	Lobatto 8-point integr.	2
FE G1				Gauss 1-point integr.	
FE G8				Gauss 8-point integr.	
DG CF 2	discontinuous Galerkin	displacement	conventional	centered flux	

3D numerical schemes					
method		equation formulation	grid	add. specif.	order
FDD CG2	finite- difference	displacement	conventional		
FD DS PSG 2		displacement -stress	partly staggered		
FD DS SG 2		displacement -stress	staggered		
FE L8	finite- element			Lobatto 8-point integr.	2
FE G1		displacement	conventional	Gauss 1-point integr.	
FE G8				Gauss 8-point integr.	
DG CF 2	discontinuous Galerkin	displacement	conventional	centered flux	
FD D CG 4a	finite- difference				
FD D CG 4b		displacement	conventional		
FD DS SG 4		displacement -stress	staggered		4

3D numerical schemes					
method		equation formulation	grid	add. specif.	order
FDD CG2	finite- difference	displacement	conventional		
FD DS PSG 2		displacement -stress	partly staggered		
FD DS SG 2		displacement -stress	staggered		
FE L8	finite- element	displacement conventi		Lobatto 8-point integr.	2
FE G1			conventional	Gauss 1-point integr.	
FE G8				Gauss 8-point integr.	
DG CF 2	discontinuous Galerkin	displacement	conventional	centered flux	
FD D CG 4a	finite- difference				
FD D CG 4b		displacement	conventional		
FD DS SG 4		displacement -stress	staggered		4
SE 4 cn, vn	spectral- element	displacement	conventional	GLL integr.	

assuming an unbounded homogeneous isotropic elastic medium and a uniform cubic grid

we wrote all schemes in a unified form:

assuming an unbounded homogeneous isotropic elastic medium and a uniform cubic grid

we wrote all schemes in a unified form:

 $U(x, y, z; t + \Delta t) = \text{numerical_scheme} \left\{ U(t - \Delta t), U(t) \right\}$

FD D CG 2 = FE L8

FD D CG 2 = FE L8 FD DS PSG 2 = FE G1 FD D CG 2 = FE L8 FD DS PSG 2 = FE G1 DG CF 2 = FE G8

a relative local error in amplitude in one time step

$$A_N$$
 = numerical amplitude at $t + \Delta t$
 A_E = exact amplitude at $t + \Delta t$

$$\varepsilon = \left(\frac{\Delta t_{ref}}{\Delta t}\right)^2 \frac{A_N - A_E}{A_E}$$

$$\Delta t_{ref} = \Delta t$$
 for FD DS SG 4
 $p = 0.9$ $s = 1/6$ $V_P/V_S = 1.42$

let us compare the schemes with the **usual** spatial discretizations

 6 grid spacings per wavelength with the 4th-order schemes and
 12 grid spacings per wavelength with the 2nd-order schemes local relative error in amplitude for plane S waves propagating in **all directions of the xz-plane**

relative local error in amplitude for a **plane S wave** propagating in the **direction of the plane diagonal**

look now at the **convergence** of the schemes

therefore, consider

$$\varepsilon = \left(\frac{\Delta t_{ref}}{\Delta t}\right)^2 \left| A_N - A_E \right|$$

$$V_{\rm P} / V_{\rm S} = 10$$

conclusions

we compared and analyzed 11 numerical schemes for their behavior with a varying $V_{\rm P}/\,V_{\rm S}$ ratio

conclusions

the inaccuracy of some schemes

with respect to the V_P / V_S ratio

inevitably leads to the

considerably lower computational efficiency

conclusions

the inaccuracy of some schemes

with respect to the V_P / V_S ratio

should be properly accounted for

in the simulations for complex realistic structures

paper on 2D schemes

Moczo, Kristek, Galis, Pazak

On accuracy of the finite-difference and finite-element schemes with respect to P-wave to S-wave speed ratio

Geophys. J. Int. 182, 493-510, 2010

available at www.nuquake.eu

thank you for your attention