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From Jeffreys, “The Earth”
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The speed of a photon in glass
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The photon speed
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A photon in the Sun

Naeye, “Through the eyes of Hubble” (CRC Press,
1998).
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The trouble with onsets

• all frequencies arrive at same time (zero phase)
• no frequencies have been attenuated away
• (and we are not even talking about instrument 
response...)
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3D: multipathed arrivals
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3D:  Jeffreys’ analysis from 1931 (!)

S(t)=

Jeffreys, 1931 
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Nuclear source
or δ(t)...
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Picking the onset is at best ambiguous 
or inaccurate, sometimes impossible.
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cross-correlation

Cuv(t) =

�
u(τ)v(τ − t) dτ
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cross-correlation

Cuv(t) =

�
u(τ)v(τ − t) dτ
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But what arrival time are we 
measuring in this way?
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Common definitions
• Signal velocity
⇄time of earliest (observable) nonzero signal

• Phase velocity
   ⇄time of crest of a monochromatic wave

• Group velocity
   ⇄time of crest of the envelope of wave

• Energy velocity
⇄time of crest of the (kinetic) energy signal

None of these corresponds to x-correlations....
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Problem: not just one path but 
single (forward) scattering
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Multiple scattering = ill posed 
inverse problem
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Born theory = first order scattering

Source s

u

u’
u"

Receiver r

dV ∆u(t)
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‘Banana-doughnut’ kernels

Period = 31.5 s
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‘Banana-doughnut’ kernels

Period = 31.5 s
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small δu and ray theory

Aki & Richards (1980 
edition)

positive δu
negative δu } (du/dt) Δt

u(t + Δt) = u(t) +  (du/dt) Δt

total δu
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nondispersive delays

u(t)

u(t− 1)

∆u(t)+

=
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dispersive delays

u(t)

∆u(t)+

= u(t) + ∆u(t)
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The sensitivity of a cross-correlation 
delay

120 Travel times: interpretation

unperturbed seismogram u(t) is given by:

γ(t) =
�

u(t�)u(t� − t)dt� . (7.3)

We define the travel time delay by the maximum of the observed cross-correlation

function, i.e. of the correlation of the observed signal u + δu with the unperturbed

wave u:

γobs(t) + δγ(t) =
�

[u(t�) + δu(t�)]u(t� − t)dt� . (7.4)

For the unperturbed wave, the cross-correlation reaches its maximum at zero lag,

so:

γ̇(0) = 0 , (7.5)

and for the perturbed wave the maximum is reached after a delay δT :

γ̇obs(δT ) = γ̇(δT ) + δγ̇(δT ) = 0 , (7.6)

where the dot denotes time differentiation. Developing γ̇ to first order, we find,

following Luo and Schuster [190] or Marquering et al. [195]:

γ̇(δT ) + δγ̇(δT ) = γ̇(0) + γ̈(0)δT + δγ̇(0) +O(δ2) = 0 , (7.7)

and using (7.4) and (7.5):

δT = −δγ̇(0)
γ̈(0)

= −
�∞
−∞ u̇(t�)δu(t�)dt�
�∞
−∞ ü(t�)u(t�)dt�

. (7.8)

It is more convenient to express (7.8) in the frequency domain. Using u̇(ω) =
−iωu(ω) from (2.67), Parseval’s theorem (2.68):

� ∞

−∞
g1(t)g2(t)dt =

� ∞

−∞
g1(ω)∗g2(ω)dω ,

and the spectral property of real signals u(−ω) = u(ω)∗, where an asterisk denotes

the complex conjugate:

δT = −
�∞
−∞[−iωu(ω)]∗δu(ω)dω

�∞
−∞[(−iω)2u(ω)]∗u(ω)dω

=
�∞
0 iω{[u(ω)∗δu(ω)]− [u(ω)∗δu(ω)]∗}dω�∞
0 ω2{[u(ω)∗u(ω)] + [u(ω)∗u(ω)]∗}dω

= −
Re

�∞
0 iωu(ω)∗δu(ω)dω�∞

0 ω2u(ω)∗u(ω)dω
. (7.9)

Picking the maximum of γobs(t), as in (7.6) is usually accurate – in Section 6.2

we saw that it is the optimal filter judged by the signal-to-noise ratio. However, in
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Compute with Born 
(SEM, ray theory)
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adjoint computation of δu
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−∞ ü(t�)u(t�)dt�

. (7.8)

It is more convenient to express (7.8) in the frequency domain. Using u̇(ω) =
−iωu(ω) from (2.67), Parseval’s theorem (2.68):

� ∞

−∞
g1(t)g2(t)dt =

� ∞

−∞
g1(ω)∗g2(ω)dω ,

and the spectral property of real signals u(−ω) = u(ω)∗, where an asterisk denotes

the complex conjugate:

δT = −
�∞
−∞[−iωu(ω)]∗δu(ω)dω

�∞
−∞[(−iω)2u(ω)]∗u(ω)dω

=
�∞
0 iω{[u(ω)∗δu(ω)]− [u(ω)∗δu(ω)]∗}dω�∞
0 ω2{[u(ω)∗u(ω)] + [u(ω)∗u(ω)]∗}dω

= −
Re

�∞
0 iωu(ω)∗δu(ω)dω�∞

0 ω2u(ω)∗u(ω)dω
. (7.9)

Picking the maximum of γobs(t), as in (7.6) is usually accurate – in Section 6.2

we saw that it is the optimal filter judged by the signal-to-noise ratio. However, in

Wednesday, 22 September 2010



adjoint computation of δu

Source s

u

u’
u"

Receiver r

dV

120 Travel times: interpretation

unperturbed seismogram u(t) is given by:

γ(t) =
�

u(t�)u(t� − t)dt� . (7.3)

We define the travel time delay by the maximum of the observed cross-correlation

function, i.e. of the correlation of the observed signal u + δu with the unperturbed

wave u:

γobs(t) + δγ(t) =
�

[u(t�) + δu(t�)]u(t� − t)dt� . (7.4)

For the unperturbed wave, the cross-correlation reaches its maximum at zero lag,

so:

γ̇(0) = 0 , (7.5)

and for the perturbed wave the maximum is reached after a delay δT :

γ̇obs(δT ) = γ̇(δT ) + δγ̇(δT ) = 0 , (7.6)

where the dot denotes time differentiation. Developing γ̇ to first order, we find,

following Luo and Schuster [190] or Marquering et al. [195]:

γ̇(δT ) + δγ̇(δT ) = γ̇(0) + γ̈(0)δT + δγ̇(0) +O(δ2) = 0 , (7.7)

and using (7.4) and (7.5):

δT = −δγ̇(0)
γ̈(0)

= −
�∞
−∞ u̇(t�)δu(t�)dt�
�∞
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7.5 Finite frequency kernels: general 129
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Fig. 7.11. Two examples of kernels KP(rx) for long-period (20 s) teleseismic P-waves in
the Earth’s mantle. The kernel in the Northern hemisphere is for a surface reflected PP-
wave at ∆ = 120◦, the shorter kernel in the Southern hemisphere for a P-wave at 60◦.
Darker greyscale indicate more negative values of the kernel, the whitish regions have a
positive value for the kernel, implying a positive delay for a positive velocity perturbation.
Such ‘reverse’ sensitivities are located in the second Fresnel zone. Note the region of re-
duced sensitivity at the centre of the kernels, except near the reflection point of PP. The
extra complexity of the PP kernel is caused by a 90◦ phase shift at the caustic, as well as
by the fact that scattered waves may also reflect from the surface. The dark shading of the
Earth’s core does not indicate a sensitivity.

We abbreviate the normalized scattering normalized coefficients into ‘interaction
coefficients’ ΩP, ΩS and Ωρ (see Table 7.1 and Figure 7.10):

ΩP,S,ρ = −1
2
p̂2 · SP,S,ρp̂1. (7.26)

These coefficients are normalized to 1 for forward scattering (γ̂1 = γ̂2) of uncon-
verted waves. Putting this all together in (7.9), we find for the travel time perturba-
tion:

δT =
� �

KP

�
δVP

VP

�
+ KS

�
δVS

VS

�
+ Kρ

�
δρ

ρ

��
d3rx, (7.27)

where δVP/VP etc. are evaluated at rx, and the Fréchet kernel for body wave delay
times is:

KX(rx) = − 1
2π

�

rays1

�

rays2

N(rx)ΩX

�
1

V1V2

� 1
2
�

Rrs

VrRxrRxs

�

×
�∞
0 ω3|ṁ(ω)|2 sin[ω∆T (rx)−∆Φ(rx)]dω�∞

0 ω2|ṁ(ω)|2dω
, (7.28)
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positive value for the kernel, implying a positive delay for a positive velocity perturbation.
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duced sensitivity at the centre of the kernels, except near the reflection point of PP. The
extra complexity of the PP kernel is caused by a 90◦ phase shift at the caustic, as well as
by the fact that scattered waves may also reflect from the surface. The dark shading of the
Earth’s core does not indicate a sensitivity.

We abbreviate the normalized scattering normalized coefficients into ‘interaction
coefficients’ ΩP, ΩS and Ωρ (see Table 7.1 and Figure 7.10):

ΩP,S,ρ = −1
2
p̂2 · SP,S,ρp̂1. (7.26)

These coefficients are normalized to 1 for forward scattering (γ̂1 = γ̂2) of uncon-
verted waves. Putting this all together in (7.9), we find for the travel time perturba-
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0 ω2|ṁ(ω)|2dω
, (7.28)

120 Travel times: interpretation

unperturbed seismogram u(t) is given by:

γ(t) =
�

u(t�)u(t� − t)dt� . (7.3)

We define the travel time delay by the maximum of the observed cross-correlation

function, i.e. of the correlation of the observed signal u + δu with the unperturbed

wave u:

γobs(t) + δγ(t) =
�

[u(t�) + δu(t�)]u(t� − t)dt� . (7.4)

For the unperturbed wave, the cross-correlation reaches its maximum at zero lag,

so:

γ̇(0) = 0 , (7.5)

and for the perturbed wave the maximum is reached after a delay δT :

γ̇obs(δT ) = γ̇(δT ) + δγ̇(δT ) = 0 , (7.6)

where the dot denotes time differentiation. Developing γ̇ to first order, we find,

following Luo and Schuster [190] or Marquering et al. [195]:

γ̇(δT ) + δγ̇(δT ) = γ̇(0) + γ̈(0)δT + δγ̇(0) +O(δ2) = 0 , (7.7)

and using (7.4) and (7.5):

δT = −δγ̇(0)
γ̈(0)

= −
�∞
−∞ u̇(t�)δu(t�)dt�
�∞
−∞ ü(t�)u(t�)dt�

. (7.8)

It is more convenient to express (7.8) in the frequency domain. Using u̇(ω) =
−iωu(ω) from (2.67), Parseval’s theorem (2.68):

� ∞

−∞
g1(t)g2(t)dt =

� ∞

−∞
g1(ω)∗g2(ω)dω ,

and the spectral property of real signals u(−ω) = u(ω)∗, where an asterisk denotes

the complex conjugate:

δT = −
�∞
−∞[−iωu(ω)]∗δu(ω)dω

�∞
−∞[(−iω)2u(ω)]∗u(ω)dω

=
�∞
0 iω{[u(ω)∗δu(ω)]− [u(ω)∗δu(ω)]∗}dω�∞
0 ω2{[u(ω)∗u(ω)] + [u(ω)∗u(ω)]∗}dω

= −
Re

�∞
0 iωu(ω)∗δu(ω)dω�∞

0 ω2u(ω)∗u(ω)dω
. (7.9)

Picking the maximum of γobs(t), as in (7.6) is usually accurate – in Section 6.2

we saw that it is the optimal filter judged by the signal-to-noise ratio. However, in
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by the fact that scattered waves may also reflect from the surface. The dark shading of the
Earth’s core does not indicate a sensitivity.

We abbreviate the normalized scattering normalized coefficients into ‘interaction
coefficients’ ΩP, ΩS and Ωρ (see Table 7.1 and Figure 7.10):

ΩP,S,ρ = −1
2
p̂2 · SP,S,ρp̂1. (7.26)

These coefficients are normalized to 1 for forward scattering (γ̂1 = γ̂2) of uncon-
verted waves. Putting this all together in (7.9), we find for the travel time perturba-
tion:

δT =
� �

KP

�
δVP

VP

�
+ KS

�
δVS

VS

�
+ Kρ

�
δρ

ρ

��
d3rx, (7.27)

where δVP/VP etc. are evaluated at rx, and the Fréchet kernel for body wave delay
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0 ω2|ṁ(ω)|2dω
, (7.28)

7.5 Finite frequency kernels: general 129

0
˚

60˚12
0˚

1
8
0
˚

240˚ 30
0˚

Fig. 7.11. Two examples of kernels KP(rx) for long-period (20 s) teleseismic P-waves in
the Earth’s mantle. The kernel in the Northern hemisphere is for a surface reflected PP-
wave at ∆ = 120◦, the shorter kernel in the Southern hemisphere for a P-wave at 60◦.
Darker greyscale indicate more negative values of the kernel, the whitish regions have a
positive value for the kernel, implying a positive delay for a positive velocity perturbation.
Such ‘reverse’ sensitivities are located in the second Fresnel zone. Note the region of re-
duced sensitivity at the centre of the kernels, except near the reflection point of PP. The
extra complexity of the PP kernel is caused by a 90◦ phase shift at the caustic, as well as
by the fact that scattered waves may also reflect from the surface. The dark shading of the
Earth’s core does not indicate a sensitivity.

We abbreviate the normalized scattering normalized coefficients into ‘interaction
coefficients’ ΩP, ΩS and Ωρ (see Table 7.1 and Figure 7.10):

ΩP,S,ρ = −1
2
p̂2 · SP,S,ρp̂1. (7.26)

These coefficients are normalized to 1 for forward scattering (γ̂1 = γ̂2) of uncon-
verted waves. Putting this all together in (7.9), we find for the travel time perturba-
tion:

δT =
� �

KP

�
δVP

VP

�
+ KS

�
δVS

VS

�
+ Kρ

�
δρ

ρ

��
d3rx, (7.27)

where δVP/VP etc. are evaluated at rx, and the Fréchet kernel for body wave delay
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0 ω3|ṁ(ω)|2 sin[ω∆T (rx)−∆Φ(rx)]dω�∞
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Why δT and not δu ?
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Why δT and not δu ?

δT

|δu|

u(t + Δt) = u(t) +  (du/dt) Δt

quickly becomes invalid because
higher order terms are neglected

total δu
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Why not group velocity?

cos[(ω +∆ω)t− (k +∆k)x] + cos[(ω −∆ω)t− (k −∆k)x]

= 2 cos(ωt− kx) cos(∆ωt−∆kx)

U =
dω

dk
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Why not group velocity?

cos[(ω +∆ω)t− (k +∆k) · x] + cos[(ω −∆ω)t− (k −∆k) · x]

= 2 cos(ωt− k · x) cos(∆ωt−∆k · x)

U =
dω

dk
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Why not group velocity?

cos[(ω +∆ω)t− (k +∆k) · x] + cos[(ω −∆ω)t− (k −∆k) · x]

= 2 cos(ωt− k · x) cos(∆ωt−∆k · x)

U =
dω

dk
→ U =

dω

dk
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The direction of  U

multipathed P waves
Plate 2. Two-dimensional P velocity model on a SW-NE transect through La Réunion from 36 land stations and 6 OBS
recording 200 m spaced air gun shots along the marine part of the transect. Results from travel time modeling and inversion and
modifications of gradients from comparison with synthetic seismograms are shown. Bold lines are interfaces sampled at reflection
turning points by observations; dotted lines are interfaces where hit by downgoing or upgoing refraction at corresponding critical
incidence. Note (1) lateral variation in green-blue upper crustal structure under the emerged part, (2) its greater thickness toward
Mauritius in the NE along the hotspot trace, (3) variation in gradient in yellow-orange deeper crust, (4) intermediate velocity
layer under the SW part of the volcanic edifice, orange-red above deep red mantle (possibly grading into the mantle color of the
NE part of the transect), which represents crustal underplating, and (5) only limited deepening of interfaces of the top of the
prevolcanic crust and of the mantle toward the island, over the 160 km from the open ocean in the SW.
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The direction of  U
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The direction of  U

dk
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multipathed P waves
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Conclusions

• Cross-correlations yield a new definition of travel time

• Not to be confused with group velocity!

• Which can be handled using (linear) Born theory

• Measuring dispersion yields extra sensitivity (even if absent!)
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