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 originally developed in fluid dynamics (Patera, 1984)

* migrated to seismology in the early 1990‘s (Seriani & Priolo, 1991)

* major advantage: accurate modelling of interfaces and the free surface (with topography)

reflection and transmission of
surfaces waves at material
discontinuities
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1. The weak form of the wave equation ...

... in1D



SEM in 1D: weak form of the wave equation

SEM is based on the weak form of the wave equation
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SEM in 1D: weak form of the wave equation

SEM is based on the weak form of the wave equation
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SEM in 1D: weak form of the wave equation

SEM is based on the weak form of the wave equation
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strong form of the wave equation

multiply with test function w(x)

integrate over x from O to L

integrate by parts

use the boundary conditions



SEM in 1D: weak form of the wave equation

SEM is based on the weak form of the wave equation

Solving the weak form of the wave equation means

to find a displacement field u(x,t) such that
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is satisfied for any differentiable test function w(x).




SEM in 1D: weak form of the wave equation

Find a displacement field u(x,t) such that
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is satisfied for any differentiable test function w(x).

Why is this important to know ?



SEM in 1D: weak form of the wave equation

Find a displacement field u(x,t) such that
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is satisfied for any differentiable test function w(x).

1. The basis of many numerical techniques:

* Finite-element method (FEM)
» Spectral-element method (SEM)
« Discontinuous Galerkin method (DGM)



SEM in 1D: weak form of the wave equation

Find a displacement field u(x,t) such that
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is satisfied for any differentiable test function w(x).

2. Free surface boundary condition is automatically satisfied

BIG advantage!
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Find a displacement field u(x,t) such that
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is satisfied for any differentiable test function w(x).

2. Free surface boundary condition is automatically satisfied

BIG advantage! Compare to finite-difference method:

-AX 0 AX 2Ax 3Ax 4Ax BAx
() o ° o o o o—---—---




SEM in 1D: weak form of the wave equation

Find a displacement field u(x,t) such that
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is satisfied for any differentiable test function w(x).

2. Free surface boundary condition is automatically satisfied

BIG advantage! Compare to finite-difference method:
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SEM in 1D: weak form of the wave equation

Find a displacement field u(x,t) such that
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is satisfied for any differentiable test function w(x).

2. Free surface boundary condition is automatically satisfied

BIG advantage!

Correct free surface comes without any additional effort!

= This makes accurate surface waves!



2. Spatial discretisation



SEM in 1D: decomposition of the computational domain

1. decompose the computational domain [0, L] into disjoint elements E;

2. consider integral element-wise




SEM in 1D: mapping to the reference interval
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SEM in 1D: mapping to the reference interval

Is the same for every element !!!

All elements can now be treated in the same way.
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SEM in 1D: approximation by polynomials

4. Approximate u‘ by interpolating polynomials.
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SEM in 1D: approximation by polynomials

4. Approximate u‘ by interpolating polynomials.
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1st try: equidistant collocation points

— exact wave field
—— approximation (interpolant)

degree 6

7 collocation points

\ Runge‘s phenomenon




SEM in 1D: approximation by polynomials

4. Approximate u‘ by interpolating polynomials.
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d—Xdy+...
dy

1st try: equidistant collocation points

— exact wave field
—— approximation (interpolant)

degree 6

7 collocation points

\ Runge‘s phenomenon

Don‘t use equidistant

collocation points!




SEM in 1D: approximation by polynomials

4. Approximate u‘ by interpolating polynomials.

©dx
jpwu—dy+...
7 dy

. — - 2nd try: Gauss-Lobatto-Legendre
(GLL) points

— exact wave field
—— approximation (interpolant)

degree 6

7 collocation points

GLL collocation points avoid
Runge‘s phenomenon!




SEM in 1D: approximation by polynomials

4. Approximate u by Lagrange polynomials collocated at the GLL points

5. choose Lagrange polynomials also for the test function w
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SEM in 1D: The mass matrix

4. Approximate u by Lagrange polynomials collocated at the GLL points

5. choose Lagrange polynomials also for the test function w
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M=mass matrix



SEM in 1D: The mass matrix

6. The integral is approximated using Gauss-Lobatto-Legendre (GLL) quadrature.

‘ Mass matrix is diagonal !!! Blg advantage 1

M=mass matrix



SEM in 1D: A brief summary
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1. mapping to the reference interval [-1 ,1]
2. polynomial approximation (GLL points)

3. numerical integration (GLL quadrature)
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SEM in 1D: A brief summary
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1 1 1 repeat this for the remaining two terms ...
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SEM in 1D: A brief summary

J;i pwudx— jEi Yz (g Wj(@% uj dx :J.Ei wfdx | weak form, element-wise

i=M"(f-K-u)

partial ordinary differential

differential spatial discretisation equation for the

equation polynomial coefficients




You have survived the math part !




3. The concept in 3D



SEM in 3D: Mesh design

accurate solutions: discontinuities need to coincide with element boundaries

low velocities: short wavelength — small elements

_ long wavelength — large elements

many small elements — high computational costs !!!



SEM in 3D: Mesh design

accurate solutions: discontinuities need to coincide with element boundaries

low velocities: short wavelength — small elements

_ long wavelength — large elements

many small elements — high computational costs !!!

possible solution: homogenisation theory (Y. Capdeville‘s talk)




Mesh design

Realistic example: The Grenoble valley

Stupazzini et al. (2009)




SEM in 3D: The general procedure

Essentially the same as in 1D:
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1. mapping to the reference cube [-1 ,1]3
2. polynomial approximation (GLL points)

3. numerical integration (GLL quadrature)

i=M"(f-K-u)
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deformed element reference cube



SEM in 3D: Available codes

GeoElse (Milano, Cagliari)

* Interaction with engineering structures

* Nonlinear rheologies (visco-plasticity)



SEM in 3D: Available codes

T. Nissen-Meyer: 2D domain, 3D synthetics

« 2D computational domain makes 3D synthetics
» Spherically symmetric Earth models

» High-frequency wave propagation



SEM in 3D: Available codes

See the talk by J. Tromp and Q. Liu.

SpecFEM3D (Paris,
Pau, Princeton)




SEM in 3D: Available codes

» Spherical section, regular grid
« Simplistic and very easy to use

» Makes nice tomographic images

SES3D
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Thank you for your attention!



