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COMPLEXITY OF DYNAMIC RUPTURE
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Complicated rupture patterns emerge in dynamic simulations
- HF seismic radiation

Hard to see in traditional source inversions based on
seismic/geodetic observations (<1Hz)



LAB EXPERIMENTS ON GELS (T. YAMAGUCHI)
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COMPLEXITY OF DYNAMIC RUPTURE
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How to improve the resolution of earthquake source observations?

Improve HF, non-parametric source imaging capabilities
—> array seismology

Study slower rupture processes
—> slow slip and tectonic tremors, slow but dynamic ruptures



A SLOW RUPTURE STAGE DURING THE 2007
M8 PISCO (PERU) EARTHQUAKE
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A SLOW RUPTURE STAGE DURING THE 2007
P1SCO (PERU) EARTHQUAKE
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TECTONIC TREMOR

Spatially coherent seismic transients (1-10 Hz)
detected by seismic networks

A mixture of low frequency earthquakes (LFE) and
very low frequency earthquakes (VLF)

Located on a belt 35-45 km deep

Source consistent with slip on asperities on the
megathrust, beneath the usual seismogenic zone

Asperity of megathrust earthquake

Micro crack generating

deep low-trequancy tremaor
Patch of VLF earthquake F - 3
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EARTHQUAKE SOURCE IMAGING BY BACK-
PROJECTION OF ARRAY DATA
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2004 Sumatra earthquake (Ishii et al, 2005)

Based on body waves recorded at teleseismic distance by large
seismic arrays

Capability to track areas of high-frequency energy radiation as
the rupture grows

Requires fewer assumptions than traditional source inversion




EARTHQUAKE SOURCE IMAGING BY BACK-
PROJECTION OF ARRAY DATA

Incident waves Principle of classical beamforming:

I Array data = sum of incident waves
9516, The pattern of time delays across the array
X AKX depends on the direction of arrival of
2 Ik

r each wave, hence on source location
(azimuth and distance to the array)

Stack along moveout

Beamforming with back-projection: curve for each time step

stack (t) = Y seismogram ,(t + 7, 1
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7, = travel _time(X,, X.urce ) time = 3 P

time=2
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RAYLEIGH CRITERIA (RESOLUTION LIMIT)

Minimum resolvable distance
between two sources:

FA
Dsin ¢

L, resolution length along the fault

L=1.22

F, source-array distance

A, apparent wavelength (apparent speed
times frequency)

D, array aperture

@, array orientation with respect to fault strike




RECENT DEVELOPMENTS IN THE METHOD

Beamforming has low resolution (can’t separate sources that are too close)

- we implemented a high-resolution technique, Mutiple Signal Classification
(MUSIC)

MUSIC was developed for long stationary signals but earthquake
seismograms are highly transient

- we combined MUSIC with multitaper cross-spectral estimation

Synthet_ic test: Beamformmg MUS|C+mu|t|taper
separation of two :

plane waves by a
linear array

- MUSIC has
higher resolution
than beamforming
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MATHEMATICAL SIGNAL MODEL

Plane wave

Xi(n)  Xz(n) Xm(N)
p
Signal model X (N)=Y_a,(8,)s;(n)+e,(n),k =1,...,m
=1

Steering vector a, =g'“™

Signal s;(n)
Gaussian white noise  €.(N)
Matrix form X (n)=A(0)S(n)+e(n) ‘

Given X(n), solve for &




MULTIPLE SIGNAL CLASSIFICATION (MUSIC)

Array data covariance matrix

Rxx = E{x(t) x"(t)} Eigen vectors of Rxx
Eigenvalues of Rxx U :[S‘G]:[%MIZ ng |%ﬂpﬂ_%‘4%m]
|a+ot, i=1L,p signal noise
e i=p+1L ,m Subspace  Subspace

MUSIC pseudo-spectrum

P(9) - I 1 |
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Signal space is orthogonal to noise space:

6, = arg max(P)
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2010 M7 HAITI EARTHQUAKE
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INTEGRATION WITH OTHER DATA
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Teleseismic+GPS+InSAR source inversion
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THE 2011 TOHOKU EARTHQUAKE

AN 450

A transformative event: o ‘ &fﬁ

uarray —
50 km

Largest and most damaging
modern earthquake (+tsunami) in
Japan

Broke a portion of the subduction
zone which seismic hazard was
underestimated

Recorded by thousands of
sensors in Japan: new
opportunities for seismology,
geodesy and earthquake
engineering




THE 2011 TOHOKU EARTHQUAKE FROM A GEODETIC PERSPECTIVE
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HIGH-FREQUENCY SOURCE IMAGING OF THE TOHOKU EARTHQUAKE BY
TELESEISMIC ARRAYS

11571107 105" 100° 95°
|

115711071057 1007 957

0 5 10015 200 2%

time [=]
|

140° 142 144°




HIGH-FREQUENCY RADIATION IS DEEP

Possible models:

AN 955
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ol of the rupture

2. Stress concentrations at the edge of
past earthquakes

3. Deep brittle asperities surrounded
by creep

4. Dynamic triggering of faults above
the megathrust
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Micro crack generating
deep low-frequency tremor
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DETAILS OF THE RUPTURE PROCESS




DETAILS OF THE RUPTURE
PROCESS
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Sketch: position of the rupture front
at regular times




SOURCE INVERSION (CHEN JI)

http://www.geol.ucsb.edu/faculty/ji/big_earthquakes/2011/03/
0311_v3/Honshu.html

Based on teleseismic body waves (dominant
period ~ 30 s) and surface waves (~200 s)
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COMPARISON TO LOCAL DATA
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HIGH-FREQUENCY RADIATION IS DEEP
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THE BOTTOM OF THE SEISMOGENIC ZONE

o Rheological brittle-ductile transition
o Transition could be heterogeneous

Micro crack generating
deep low-frequency tremor




FAULT ZONE
STRUCTURE

Upper limit of
the seismogenic

o Fault zone melange

(intermingled lithologies) Aepri = e
nucleation-site
o Fractal distribution of [ ] secimssrc
phacoid sizes I conciionaiy stabie

- Unstable/Seismic
(Fagereng, 2011)

Craaping region

Cluster of small asperities,
equivalent to large asperity?

Lower limit of
the seismogenic zone

Magathrust Interface

Figure 3. Photographs of competent lenses at different scales: (a) 4 m long sandstone phacoid enclosed

by mudstone. The long axis of the lens is subparallel to slickenfibres i
4 cm long sandstone lens surrounded by a mudstone matrix. Note verti

lens from brittle extension of the phacoid. (¢) Photomicrograph (plane polarized light) of ~I mm long

lithic clasts in a mudstone matrix.

n surrounding shear veins. (b) The
cal extension vein in the sandstone
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THE BOTTOM OF THE SEISMOGENIC ZONE
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CONCLUSIONS

The 2011 M9 Tohoku (Japan) earthquake featured a
mixture of slow and fast rupture styles: a stage of slow,

deep rupture propagation punctuated by bursts of high-
frequency radiation

These phenomena probe the mechanics of the brittle-
ductile transition of natural faults

Insight on fundamental up-scaling problems (micro/macro)
in the physics of friction

Perspectives:

Mapping HF radiation sources in advance >
strong ground motion prediction
- earthquake hazard assessment

Tracking the rupture in real-time

- earthquake early warning systems for large ruptures
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A network of strong motion arrays?
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