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A Bayesian Tutorial



A Bayesian tutorial

Figure: Expounders of the Bayesian viewpoint - Bayes, Jeffreys, Jaynes
and Tarantola.

Albert like Jeffreys and Jaynes are Bayesians who hold that
probabilities encode degrees of belief and do not exist except as a
representation of information about the world. For some, this
position means that a Bayesian view of probability is hopelessly,
fatally subjective - ”unscientific”.



A Bayesian tutorial

Probabilities are conditional and assigned based on experimental
and theoretical information:

P (A|I)

where A is a proposition and I is background (prior) infomation.

Objectivity arises from the requirement that the same information I
will lead to the same probability assignment and thus the same
inference (Jaynes, 2003).
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A Bayesian tutorial

The Bayesian interpretation of probability is a model for learning:

the output from one experiment (the posterior probability),

P (m|d) = k p(m)P (d|m)

can be used as input (the prior probability) in the next

P (m|d′) = k P (m|d)P (d′|m)
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Quest for Information -

Albert Tarantola’s reformulation of Inverse Theory



Solving the linear inverse problem

In the late 70s inverse theory was dominated by methods aimed at
linear/linearized problems (regularization, Backus-Gilbert).

The solution to the linear inverse problem d = Gm can be found
through regularization (e.g., Tikhonov, 1963) and in its simplest
form is

m = (GtG+ λI)−1Gtd

where λ is a regularization parameter.



Quest for information

This seminal paper presented a radical departure from established
theory: parameters were represented by probability distributions
instead of numbers.

I The solution was formulated as a
combination of different states of
information of a set of (model)
parameters emanating from
observations and prior information.



Quest for information

• Tarantola and Valette (1982) proposed that two independent
states of information, f1(x) and f2(x), on a set of parameters x
could be combined to produce a new probability density according
to (conjunction of states of information)

f(x) =
f1(x)f2(x)

µ(x)
,

where µ(x) is the homogeneous prior probability distribution
(formerly the ’non-informative’).



Quest for information

Examples of homogeneous priors

Figure: Examples of µ(x). Left - acoustic velocity (slowness); right -
joint seismic velocities Vp and Vs. From Mosegaard & Tarantola (2002).

• Use of x′ = log(x/x0) for Jeffreys parameters (e.g., v− s, ρ− σ)
results in a constant homogeneous probability density.
• Moreover, the probability distributions so obtained are invariant
under transformations.
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Quest for information

Examples of priors: Symmetry considerations

Figure: Crystal symmetry.



Quest for information

Examples of priors: Data (e.g., laboratory measurements, previous
geophysical studies, etc.)

Figure: Laboratory measurements of rock density.



Quest for information

The inverse problem formulated as a combination of independent
states of information:

1. prior information on m obtained independently of data
ρm(m).

2. information obtained from (uncertain) observations ρd(d).

3. the joint prior ρ(d,m) = ρd(d)ρm(m).

4. a distribution θ(d,m) describing an uncertain theory
d ≈ g(m) over the joint data/model space.

combining 1-4 using the conjunction of states of information
results in

σ(d,m) =
ρ(d,m)θ(d,m)

µ(d,m)
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Quest for information

Figure: Combination of states of information. From Tarantola (2005).

which for many applications is typically written

σm(m) = kρm(m)L(m)

L(m) = k exp [−S(m)]

S(m) =
1

2

[
(g(m)− dobs)

tC−1D (g(m)− dobs)
]
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Sampling the Model Space



Sampling the posterior

σ(m) is typically pathological (e.g., multimodal, non-normalizable)

How do we obtain the posterior distribution in the model space ?



Sampling the posterior

Let us perform a grid search over the entire model space.



Sampling the posterior

Instead, let us try a sampling-based method such as importance
sampling (Metropolis, Gibbs).

There are several algorithms available: crude Monte Carlo (random
search), genetic algorithms, Importance sampling methods (Gibbs,
Metropolis), Neighbourhood algorithm, simulated annealing, etc.



Sampling the posterior

Importance sampling using Metropolis algorithm

• if L(mj) ≥ L(mi), accept proposed transition i→ j.
• if L(mj) < L(mi), accept proposed transition with probability

Pi→j =
L(mj)
L(mi)



Sampling the posterior

Importance sampling



Sampling the posterior

This became Albert’s preferred idea - representing probability
densities with samples from the probability distribution.

The solution is not one model but a collection of models that are
consistent with both prior information and data



Displaying models

The ’movie’ strategy applied to seismic tomography: inversion of
fundamental-mode and higher order Rayleigh- and Love-wave
dispersion data

Figure: Six thermal models taken randomly from the prior pdf. From
Khan et al. (2011).



Displaying models

Posterior compositional models.

Figure: Six thermal models taken randomly from the posterior pdf (Khan
et al., 2011).



Displaying models

Prior compositional models.
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Figure: Six compositional models taken randomly from the posterior pdf
(Khan et al., 2011).



Displaying models

Posterior compositional models.

Figure: Six compositional models taken randomly from the posterior pdf
(Khan et al., 2011).



Displaying models

Prior Vs models.

Figure: Six thermal models taken randomly from the prior pdf. From
Khan et al. (2011).



Displaying models

Posterior Vs models.

Figure: Six thermal models taken randomly from the posterior pdf (Khan
et al., 2011).



Analysis of the posterior distribution

1. Calculation of resolution measures

R(Ω , f) =
∫

Ω
f(m)σ(m)dm ≈ 1

N

∑
{n|mn∈Ω}

f (mn)

2. Bayesian hypothesis testing

Given two hypotheses Hi, Hj , the Bayes factor, Bij in favour of
Hi (and against Hj) is given by the posterior to prior odds ratio.

Bij(d) =
P(d|Hi)

P(d|Hj)
=
P(Hi|d)/P(Hj |d)
P(Hi)/P(Hj)

Bayes factor provides a measure of whether the data d have
increased or decreased the odds on Hi relative to Hj . If
Bij(d)>1, Hi is more plausible than Hj in the light of d.
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Displaying models

Albert rejected the use of the least-squares technique, because the
solution is an unlikely outcome

Figure: Earth models as realizations of a 2D Gaussian stochastic process,
which were generated by sequential simulation and constrained by well
data (left three figures). Right - least-squares solution. From Strebelle
(2002).



Recommended further reading



Recommended further reading

Geophysics, in press, 2011.



Are the Earth and Moon compositionally alike ?



Introduction

Why do we want to study the internal structure of the Moon?

Figure: The Moon-forming impact as envisioned by W. Kaufmann



Introduction

Because it holds the clue to understanding the formation and
evolution of the Moon and Earth

Figure: The Moon-forming impact as modeled by Canup (2000).



Are the Earth and the Moon compositionally alike ?

Figure: Deployment of seismometer during
Apollo 11 EVA and distribution of seismic
array on the lunar frontside.



Are the Earth and the Moon compositionally alike ?

Figure: Inspection of lunar seismograms on Earth. Courtesy of
NASA/JPL.



Are the Earth and the Moon compositionally alike ?

Figure: Lunar sample seismograms. From Nakamura et al. (1983).



Are the Earth and the Moon compositionally alike ?

Figure: A possible sample from the Moon ?



Are the Earth and the Moon compositionally alike ?



Thermodynamic Modeling

We compute physical properties directly for a given chemical
composition (c), pressure (P ) and temperature (T )
using Gibbs’ free energy minimisation (e.g. Perple X, Connolly,
2005):

c Vs
g1
↘

g2
↗

M
g2→ Vp

g1
↗

g2
↘

T ρ

where c is CFMAS composition, comprising the oxides of the
elements CaO-FeO-MgO-Al2O3-SiO2.



Are the Earth and the Moon compositionally alike ?

Figure: Posterior pdf’s showing sampled bulk lunar compositions (silicate
part). Crosses denote the Earth’s PUM composition as determined by
McDonough & Sun (1995). From Khan et al. (2007).



Are the Earth and the Moon compositionally alike ?

Figure: Sampled lunar modal mineralogy as a function of depth. From
Khan et al. (2007).

This model is broadly consistent with constraints on mantle
mineralogy derived from the experimental and observational study
of the phase relationships and trace element compositions of lunar
mare basalts and picritic glasses.


