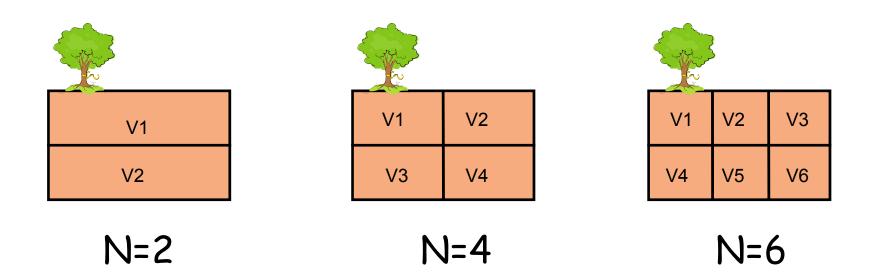
When one of the things you don't know is the number of things you don't know



THE AUSTRALIAN NATIONAL UNIVERSITY

Thomas Bodin & Malcolm Sambridge

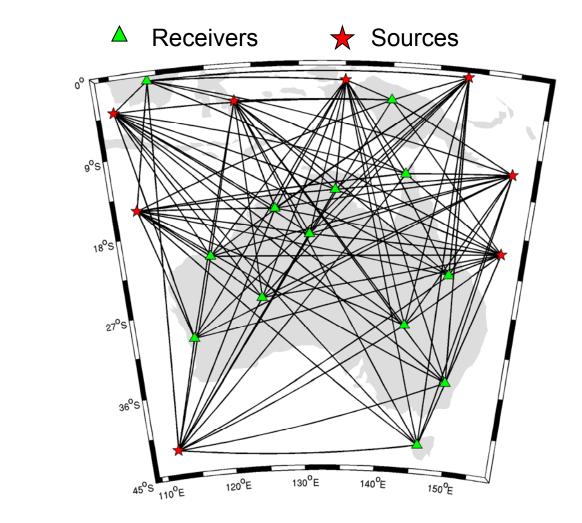
Outline

1. The problem of model parameterization

2. Trans-dimensional Inverse Methods

- Non-linear regression example
- 3. Application in Seismology
 - Receiver functions
 - Seismic tomography
 - Joint inversion

2D Seismic surface wave Tomography



We want

A map of surface wave velocity

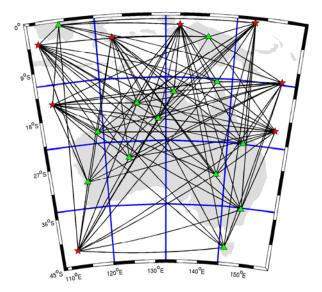
We have

Average velocity along seismic rays

Regular Parameterization

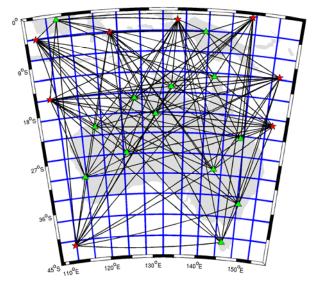
Coarse grid

Fine grid



Resolution Constraint on the model

Bad



Good

Bad

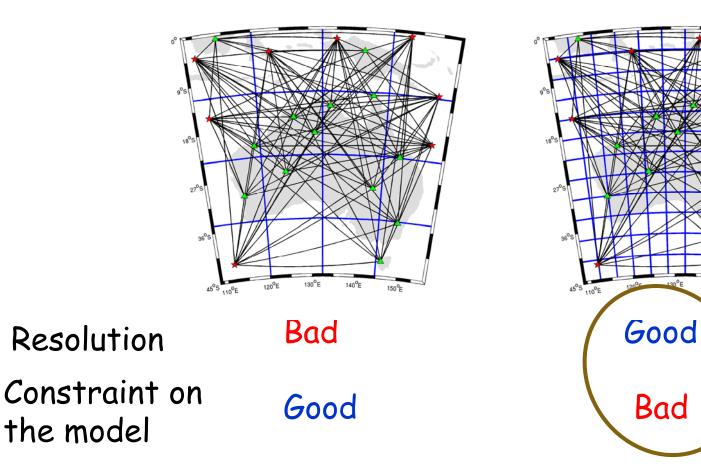
Regular Parameterization

Coarse grid

Fine grid

140⁰E

150°E

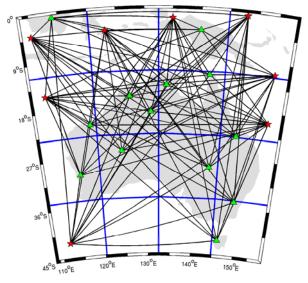


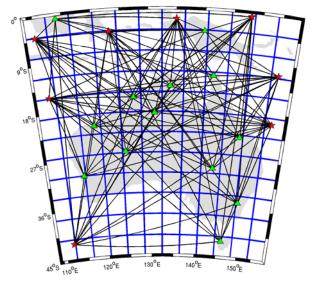
Define arbitrarily more constraints on the model

Regular Parameterization

Coarse grid

Fine grid

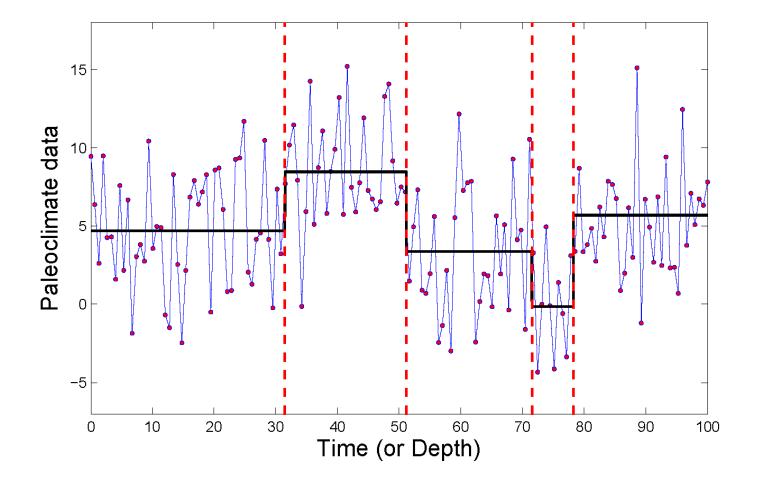


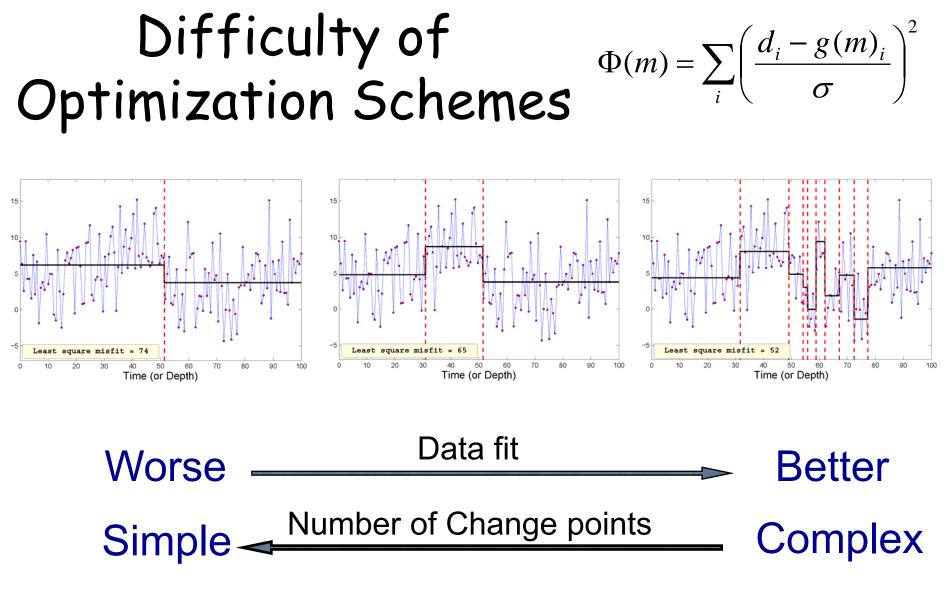


3 Problems

- Number of cells
- Level of damping or smoothing
- Regularization is global

Change Point Modelling of Paleoclimate Data





Importance of data noise for choosing the solution

Bayesian Inference

 $\Phi(m) = \sum_{i} \left(\frac{d_i - g(m)_i}{\sigma}\right)^2$

Optimization:

Fix the number of cells minimize the data misfit

Trans-dimensional Bayesian formulation:

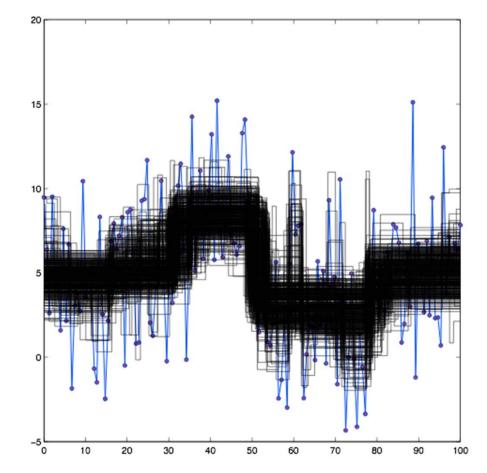
The number of cells is variable and the solution is a probability distribution

The solution is an ensemble of models with variable dimensions

Ensemble Inference

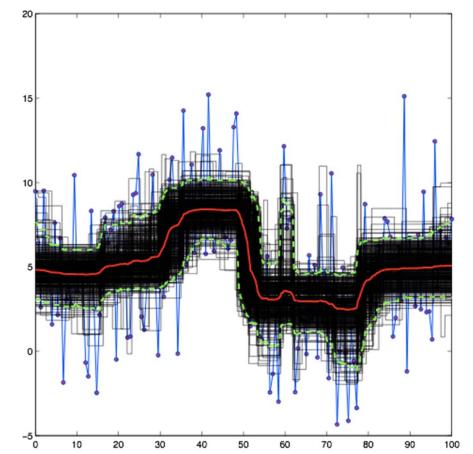
Trans-dimensional Markov chain

Solution is a large ensemble of models with varying parameterization.



Ensemble Inference

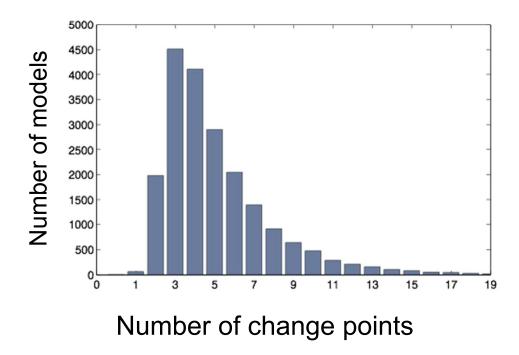
Some useful statistical information can be extracted from the ensemble solution

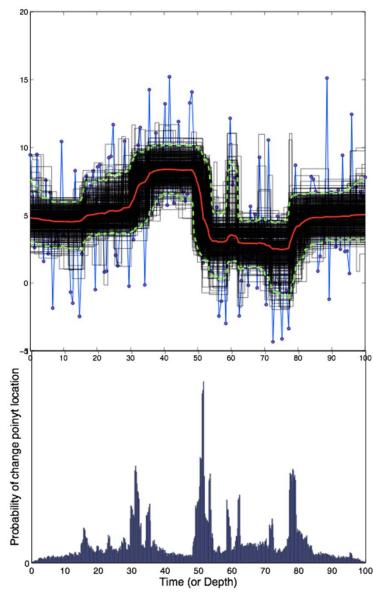


--- 95% credible interval

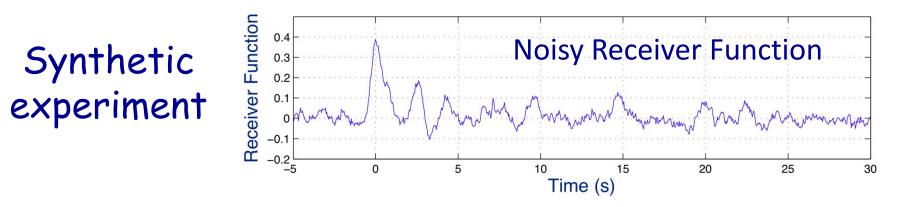
Ensemble Inference

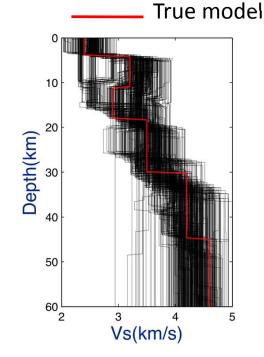
Some useful statistical information can be extracted from the ensemble solution





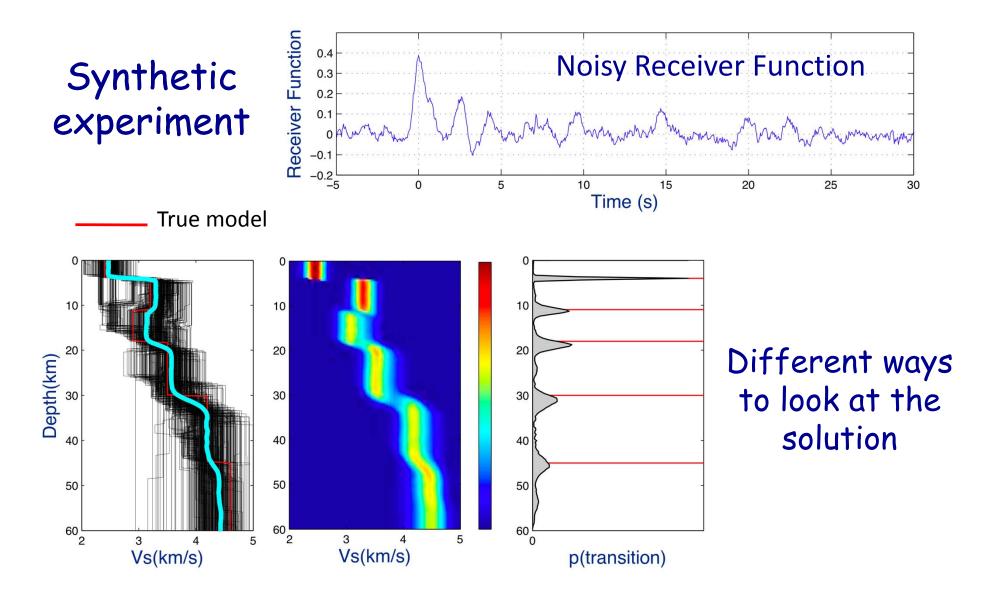
Inversion of Receiver Function



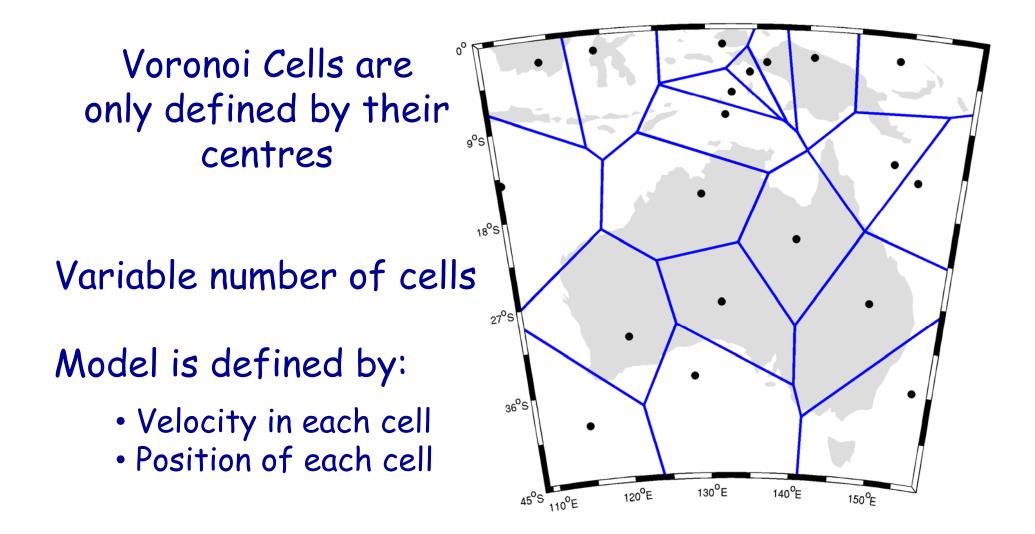


Solution is a large ensemble of models distributed according to the target distribution

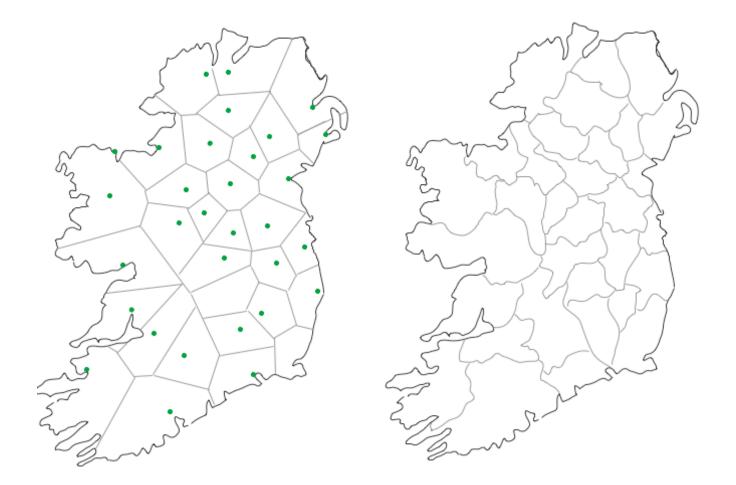
Inversion of Receiver Function



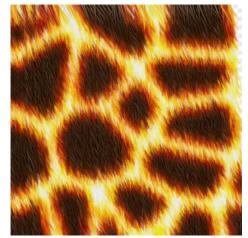
Application to Tomography



Voronoi cells are everywhere

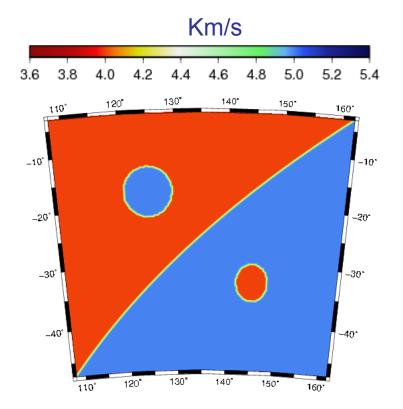


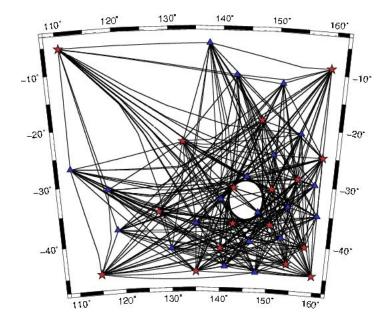
Voronoi cells are everywhere



Voronoi cells are everywhere

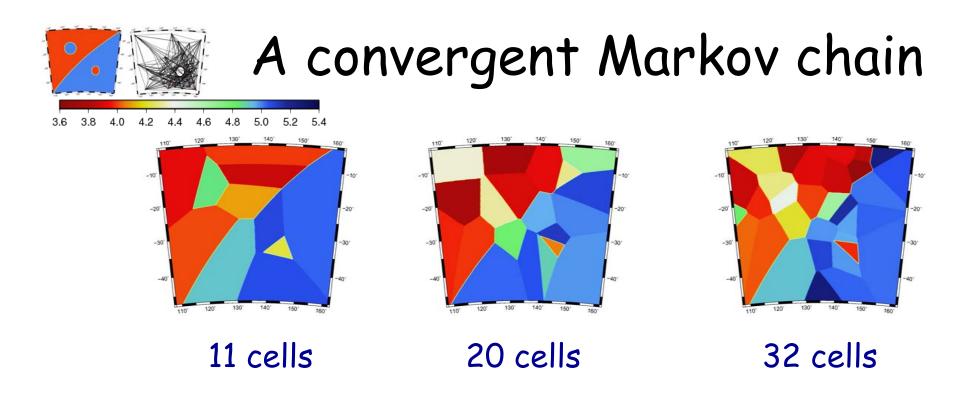
Synthetic experiment





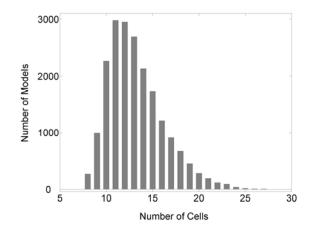
Ray geometry

True velocity model



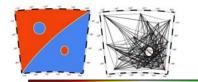
Current model at different points along the chain

Current model at different points along the chain

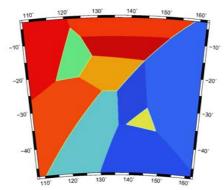


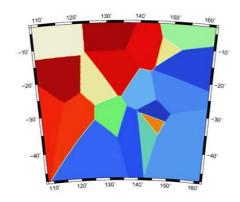
Estimated distribution for the number of cells

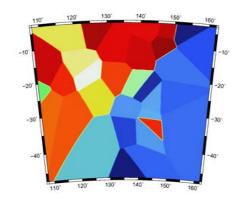
A convergent Markov chain



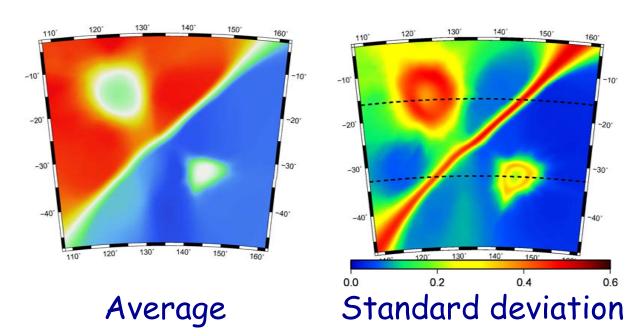
3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0 5.2 5.4

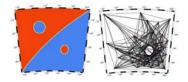






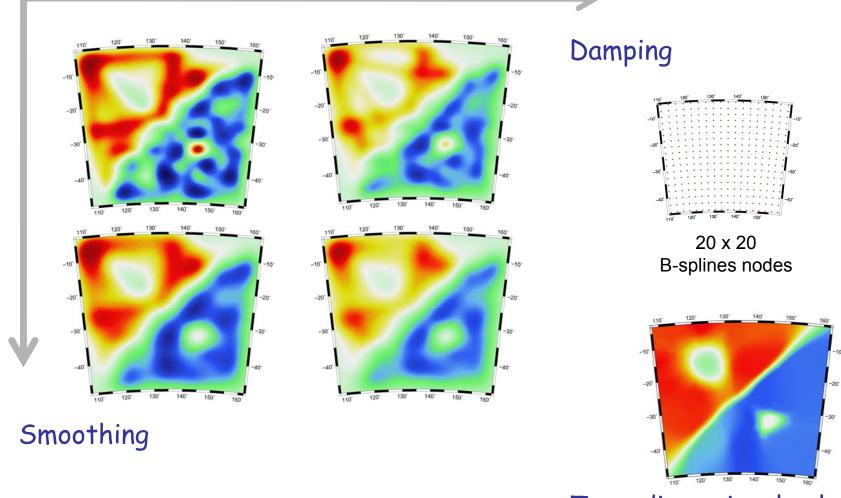
11 cells





The Standard approach with a fixed Regular grid (20*20 nodes)

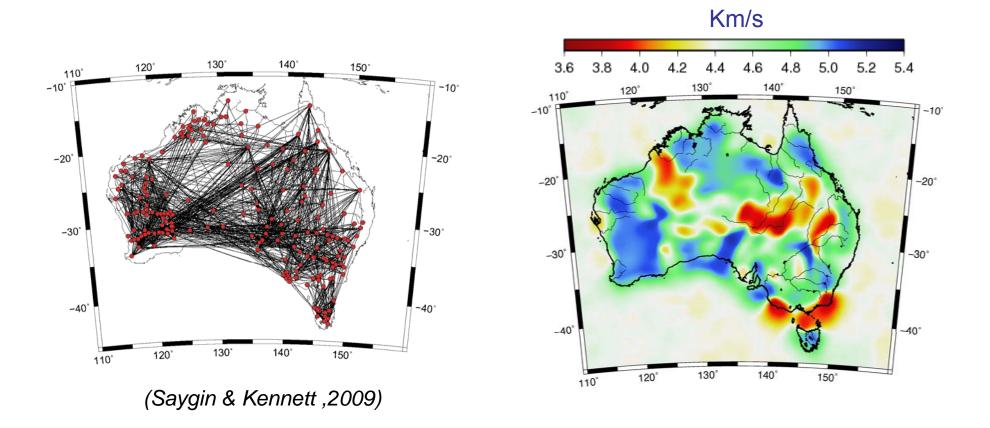
3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0 5.2 5.4

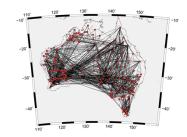


Transdimensional solution

Real Data Application

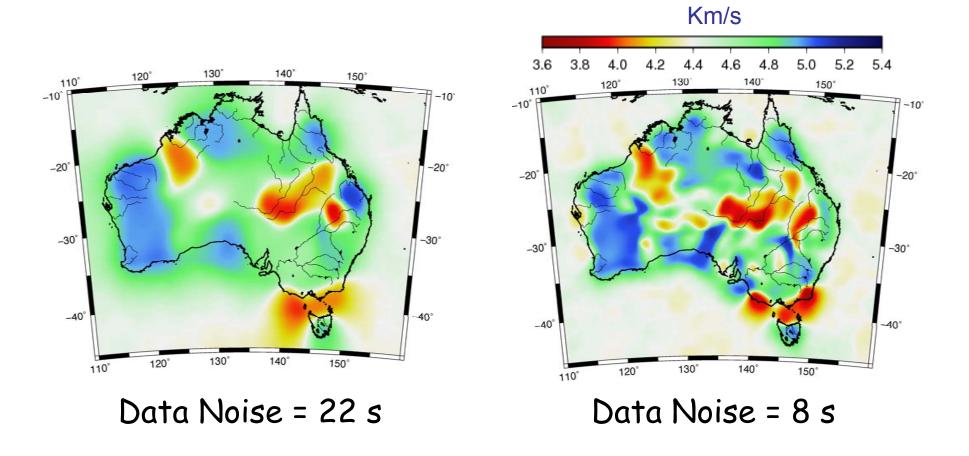
Cross correlation of seismic ambient noise for Rayleigh wave group velocity at 5s





Real Data Application

The choice of model complexity is automatic and depends on estimated data noise



Hierarchical Bayesian Formulation

Account for the uncertainty in the level of the data noise

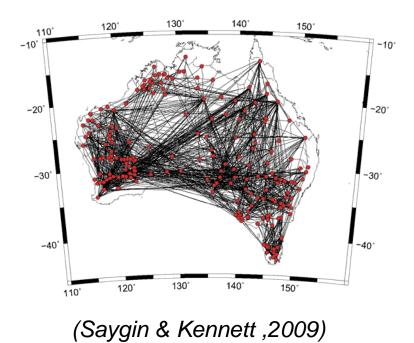
$$p(m \mid d) \propto \frac{1}{\sqrt{2\pi\sigma^{N}}} \exp\left[-\frac{1}{2} \sum_{i=1}^{N} \left(\frac{d_{i} - g(m)_{i}}{\sigma}\right)^{2}\right]$$

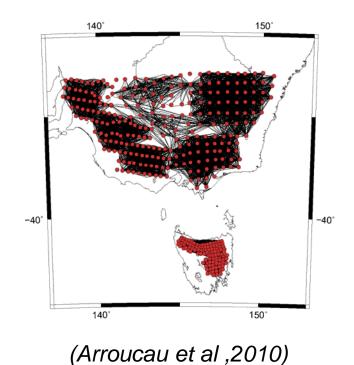
Malinverno & Parker (2004)

Level of Data noise is treated as an unknown in the problem

Multi-scale Tomography with Field Data

Cross correlation of seismic ambient noise for Rayleigh wave group velocity at 5s

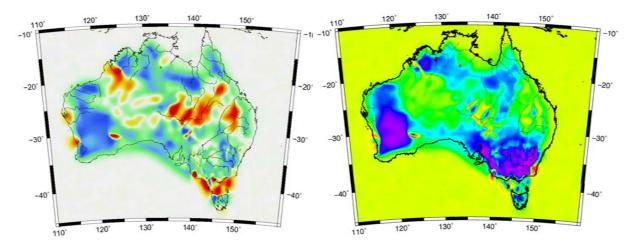




Multi-scale Tomography

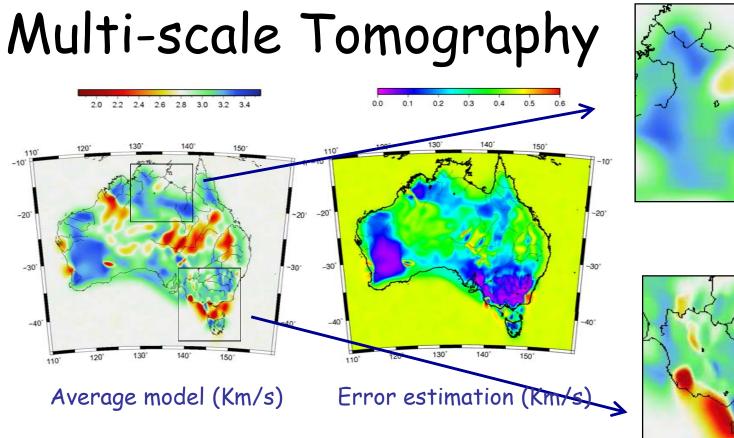
2.0 22 2.4 2.6 2.8 3.0 3.2 3.4

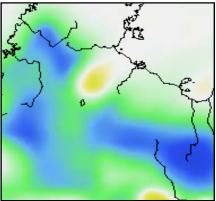
0.0 0.1 0.2 0.3 0.4 0.5 0.6

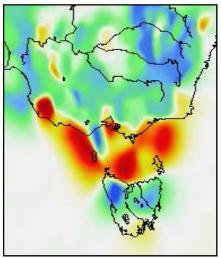


Average model (Km/s)

Error estimation (Km/s)

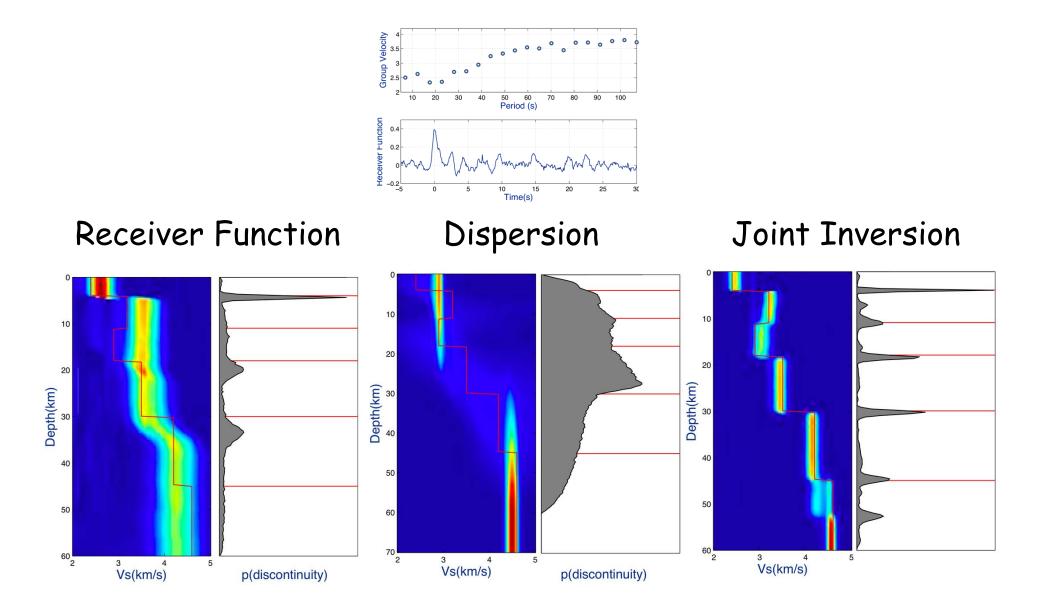






Algorithm finds automatically the correct model complexity and the correct level of data noise

Application to Joint Inversion



Conclusion

Different features of trans-dimensional methods:

Adaptive parameterization
No need of regularization
Hierarchical Bayesian formulation enables to quantify the information brought by each data set.

This is a general inversion strategy. We have applied to other types of inverse problems in Earth Science

> Seismic tomography Receiver Functions Dispersions curves Electromagnetic data Regression of palaeoclimate data