

Fault Representation Methods for Spontaneous Dynamic Rupture Simulation

Luis A. Dalguer

Computational Seismology Group Swiss Seismological Service (SED) ETH-Zurich

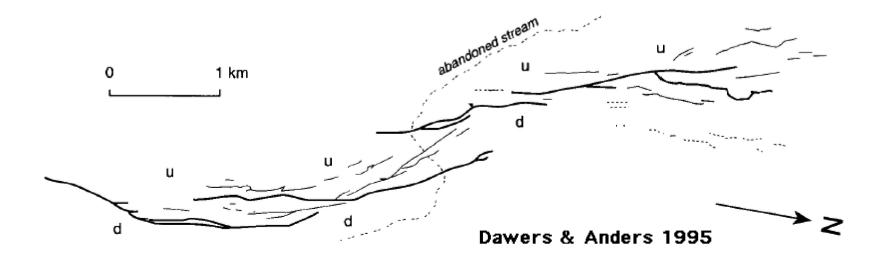
July 12-18, 2011

2st QUEST Workshop, Iceland,

QUantitative estimation of Earth's seismic sources and STructure

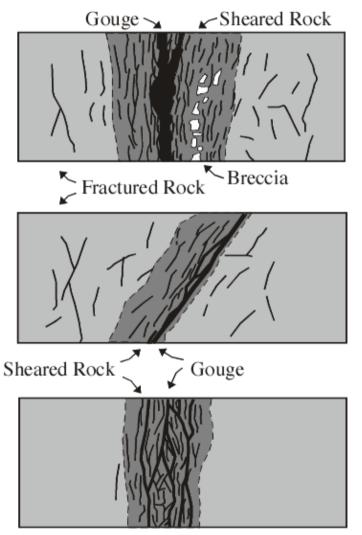
Earthquakes are complex at all scales

- Faults are not isolated (segmented and linked, irregular and rough at all scales)
- How does local characteristics of these complexities influence ground motion?

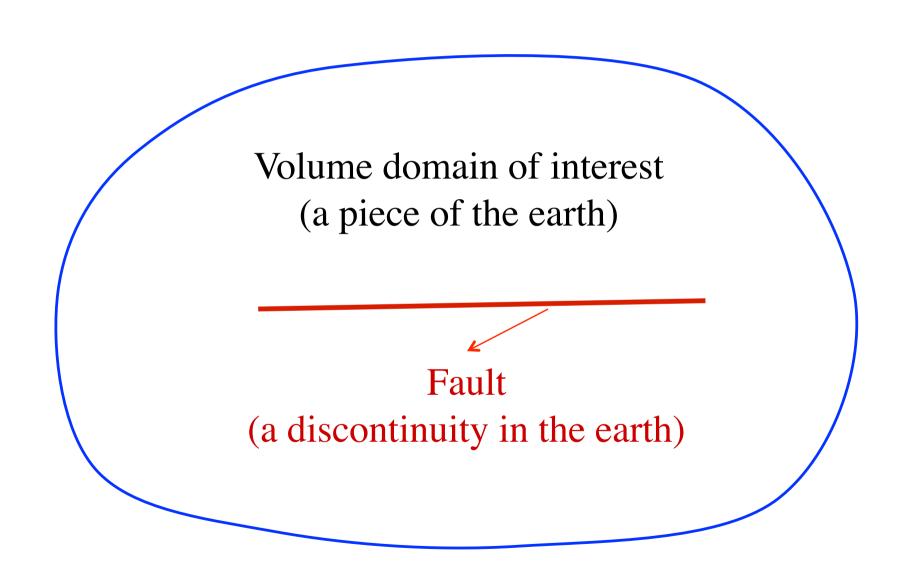


Internal Structure of Faults

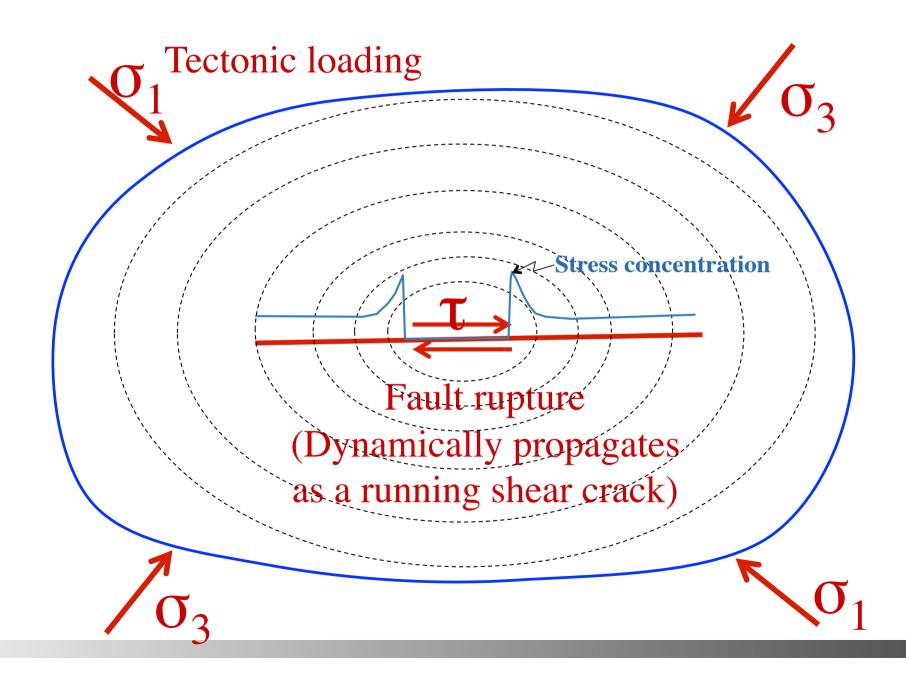
- Detail observation of fault may provides important insight on the physics of rupture and the process of dynamic weakening
- Smaller-scale frictional processes during high-speed rupture?
- Distributed-shearing (Zones of distributed damage)
- How does these complexities influence ground motion?



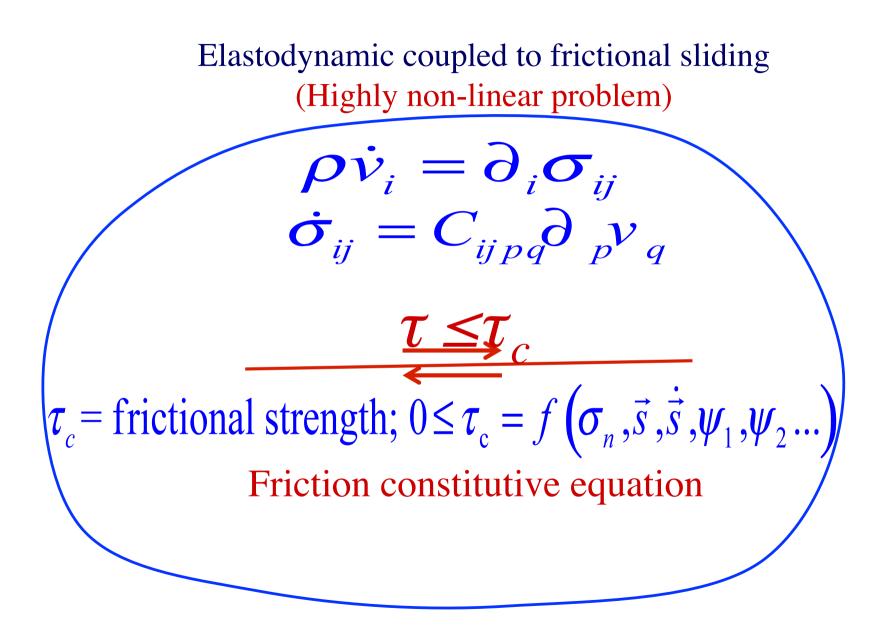
Wallace and Morris, 1986



Problem statement



Mathematical Model



Fault-surface boundary conditions

Mathematical Model

 $\vec{\tau}$ = shear stress vector ($\tau \equiv |\vec{\tau}|$) σ_n = normal stress (positive in compression) $\dot{\vec{s}}$ = tangential slip velocity ($\dot{s} = |\dot{\vec{s}}|$) U_n = opening displacement discontinuity τ_c = frictional strength; $0 \le \tau_c = f(\sigma_n, \vec{s}, \dot{\vec{s}}, \psi_1, \psi_2...)$

For shear (nonlinear)

 $\tau - \tau_c \leq 0$

$$\vec{\tau}\dot{s} - \tau_c \dot{\vec{s}} = 0$$

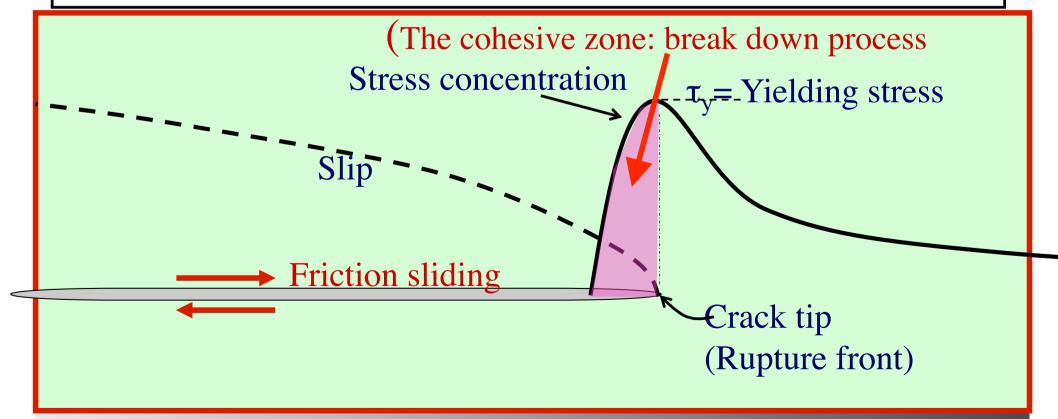
For opening (nonlinear)

 $\sigma_n \ge 0$ $U_n \ge 0$ $\sigma_n U_n = 0$

(Interaction between the two sides of the fault)

Stress and friction on the fault

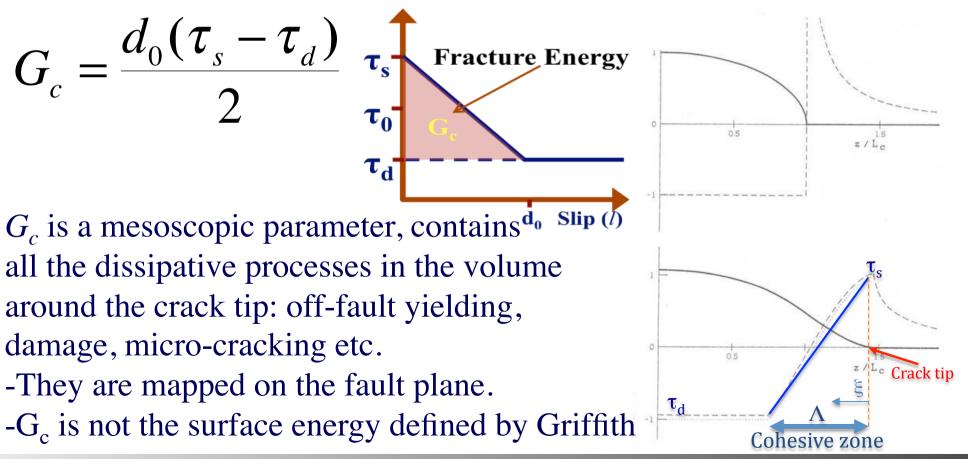
The earthquake rupture can be described as a two-step process: (1) formation of crack and (2) propagation or growth of the crack. The crack tip serves as a stress concentrator due to driving force; if the stress at the crack tip exceeds some critical value, then the crack grows unstably accompanied by a sudden slip and stress drops.



Cohesive zone (Fracture mechanics) and friction model

- Models
- -Constant (Barenblatt, 1959)
- -Linearly dependent on distance to crack tip (Palmer and Rice, 1973; Ida, 1973)

-Linearly dependent on slip (Ida, 1973 Andrews; 1976)



Stress and friction on the fault

Slip weakening friction model (In the form given by Andrews, 1976) $\mathcal{T}_{c} = \mathcal{O}\mathcal{U}_{f}(\ell)$

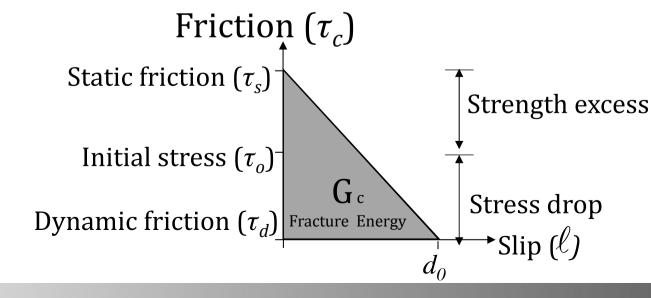
SED

Schweizerischer Erdbebendienst

Swiss Seismological Service

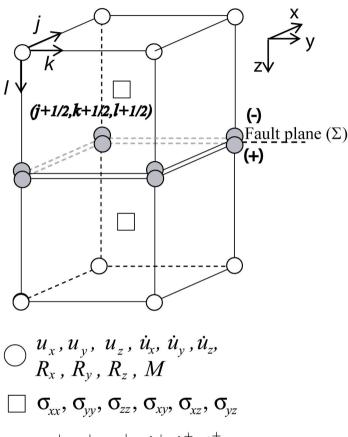
$$\mu_{f}(\ell) = \begin{cases} \mu_{s} - (\mu_{s} - \mu_{d})\ell/d_{0} \\ \mu_{d} \end{cases}$$

$$\ell < d_0 \\ \ell \ge d_0$$



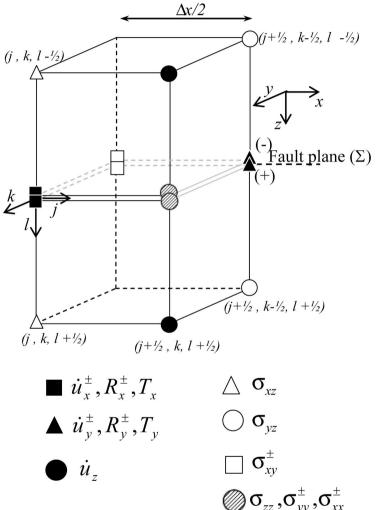
- Traction at Split-node method Fault Discontinuity explicitly incorporated (Andrews, 1973; DFM model: Day, 1977, 1982; SGSN model, Dalguer and Day, 2007)
- "Inelastic-zone" methods: Fault Discontinuity <u>not</u> explicitly incorporated
 Thick-fault method (TF) (Madariaga et al., 1998)
 - Stress-glut (SG) method (Andrews 1976, 1999)

Traction at Split-Node method



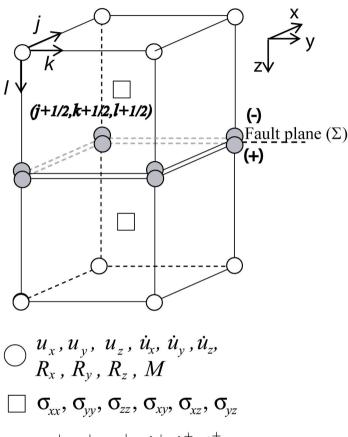
 $u_x^{\pm}, u_y^{\pm}, u_z^{\pm}, \dot{u}_x^{\pm}, \dot{u}_y^{\pm}, \dot{u}_z^{\pm}, \\ R_x^{\pm}, R_y^{\pm}, R_z^{\pm}, M^{\pm}, T_x, T_y, T_z$

For partially Staggered Grid (e.g, model DFM Day, 1982; Day et al, 2005)



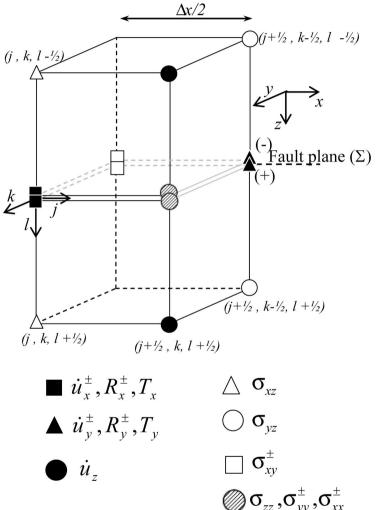
For Staggered Grid Staggered-Grid Split-Node Method (SGSN) (Dalguer and Day 2007, JGR)

Traction at Split-Node method



 $u_x^{\pm}, u_y^{\pm}, u_z^{\pm}, \dot{u}_x^{\pm}, \dot{u}_y^{\pm}, \dot{u}_z^{\pm}, \\ R_x^{\pm}, R_y^{\pm}, R_z^{\pm}, M^{\pm}, T_x, T_y, T_z$

For partially Staggered Grid (e.g, model DFM Day, 1982; Day et al, 2005)



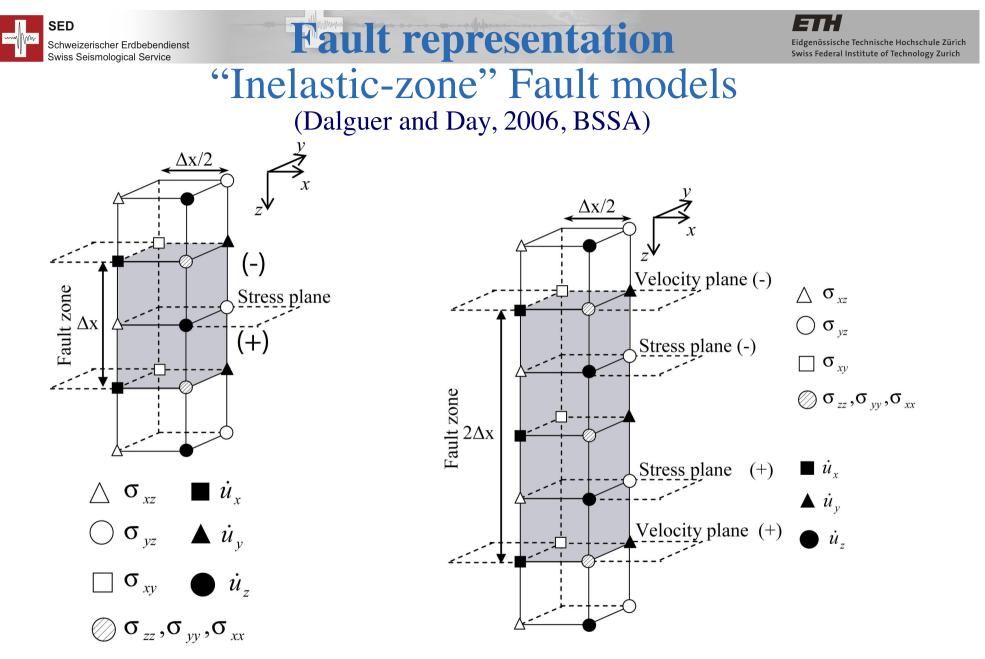
For Staggered Grid Staggered-Grid Split-Node Method (SGSN) (Dalguer and Day 2007, JGR)

Schweizerischer Erdbebendienst

Traction at Split-Node method Discrete representation of equation of motion on the fault (Central Differencing in time) $\dot{u}_{v}^{\pm}(t + \Delta t/2) = \dot{u}_{v}^{\pm}(t - \Delta t/2) + \Delta t(M^{\pm})^{-1} \left\{ R_{v}^{\pm}(t) \mp a \left[T_{v}(t) - T_{v}^{0} \right] \right\}$ $\dot{s}_{\nu} = \dot{u}_{\nu}^{+} \left(t + \Delta t/2 \right) - \dot{u}_{\nu}^{-} \left(t + \Delta t/2 \right) \quad \text{(Slip velocity)}$ Compute "trial" traction T_{ν} that enforces continuity of tangential velocity and continuity of normal displacement ($\dot{s}_v = 0$) Then the actual nodal traction T_{v} (tangential components v=x,y) that $\left[(\tilde{T}_x)^2 + (\tilde{T}_v)^2 \right]^{1/2} \le \tau_c$ satisfies b.c.'s is \tilde{T}_{v} for $T_{v} = \begin{cases} \tau_{c} \frac{\tilde{T}_{v}}{\left[(\tilde{T}_{x})^{2} + (\tilde{T}_{y})^{2} \right]^{1/2}} & \text{for} \quad \left[(\tilde{T}_{x})^{2} + (\tilde{T}_{y})^{2} \right]^{1/2} > \tau_{c} \end{cases}$

 \vec{u}^{\pm} = split-node velocities (+,- side of fault, respectively) \vec{R}^{\pm} = stress divergence terms from FD eqns (+,- side) M^{\pm} = nodal mass factors from FD eqns (+,- side) \vec{T} = split-node traction vector (no jump) a = interface area of split node

 Δt =time step T_{v}^{0} =Initial traction



Stress-glut method (SG) (Andrews 1976, 1999) Thick-fault method (TF) (Madariaga et al., 1998)

"Inelastic-zone" Fault models

Fault representation

Nodal Stress by Central Differencing in time gives (example $\sigma_{_{xz}}$)

$$\sigma_{xz}(t) = \sigma_{xz}(t - \Delta t) + \Delta t 2\mu \dot{\varepsilon}_{xz}(t - \Delta t/2)$$

addition of an inelastic component to the total strain rate $(T_x = \sigma_{xz})$

$$\sigma_{xz} = T_x(t) = T_x(t - \Delta t) + \Delta t 2\mu \left[\dot{\varepsilon}_{xz}(t - \Delta t/2) - \dot{\varepsilon}_{xz}^p(t - \Delta t/2) \right]$$

Compute "trial" traction setting $\dot{\mathcal{E}}_{xz}^{p}(t-\Delta t/2)=0$

$$\tilde{T}_{x}(t) = T_{x}\left(t - \Delta t\right) + \Delta t 2\mu \dot{\varepsilon}_{xz}\left(t - \Delta t/2\right)$$

Then set the fault plane traction to

$$T_{x}(t) = \begin{cases} \tilde{T}_{x}(t) & \text{if } \tilde{T}_{x}(t) \leq \tau_{c} \\ \tau_{c} & \text{if } \tilde{T}_{x}(t) > \tau_{c} \end{cases}$$

"Inelastic-zone" Fault models

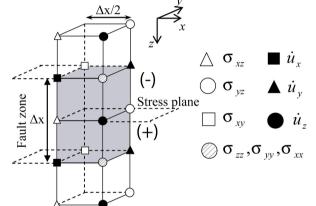
Stress-glut method (SG)

Frictional bound enforced on one plane of traction nodes Calculate inelastic component $\dot{\mathcal{E}}_{r_7}^p$

$$\dot{\varepsilon}_{xz}^{p}(t - \Delta t/2) = \frac{\tilde{T}_{x}(t) - T_{x}(t)}{2\mu\Delta t}$$

Calculate the total slip rate by integrating $\dot{\mathcal{E}}_{xz}^{p}$ over the spatial step

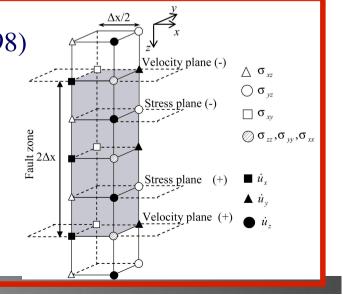
$$\dot{s}_{x}\left(t-\Delta t/2\right)=2\Delta x\dot{\varepsilon}_{xz}^{p}\left(t-\Delta t/2\right)$$



Thick-fault method (TF) (Madariaga et al, 1998) Frictional bound enforced on 2 planes of traction nodes

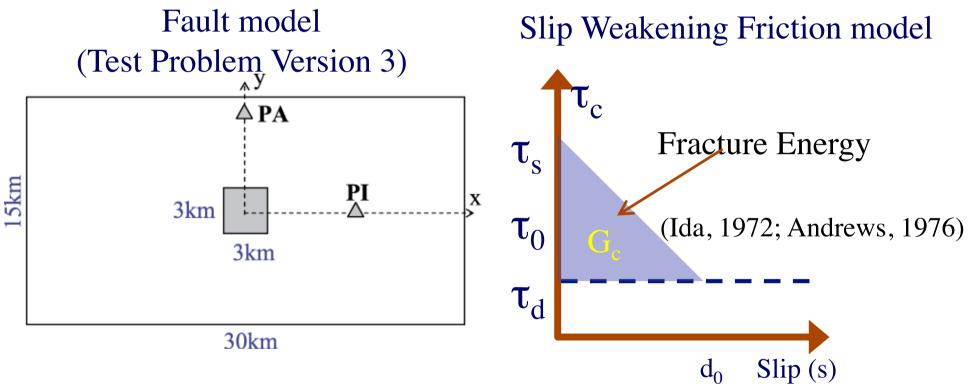
Slip-velocity given by velocity difference across 2 unit-cell wide zone

$$\dot{s}_{x}(t - \Delta t/2) = \dot{u}_{x}^{(+)}(t - \Delta t/2) - \dot{u}_{x}^{(-)}(t - \Delta t/2)$$



SCEC 3D Rupture Dynamics Code Validation Project (coordinators Ruth Harris, Ralph Archuleta)

Assessment of Methods



Numerical resolution measured by

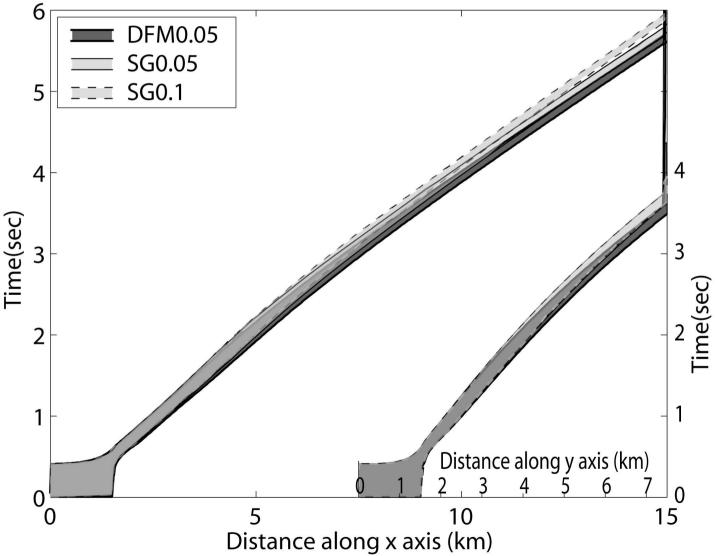
 Λ = cohesive-zone width (normal to rupture front) Δx = spatial step size (in numerical solution)

SFD

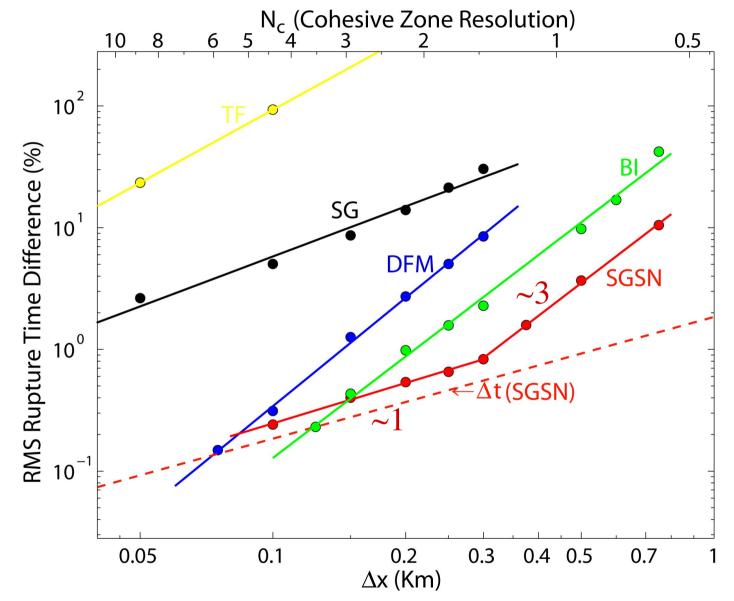
Schweizerischer Erdbebendienst

Swiss Seismological Service

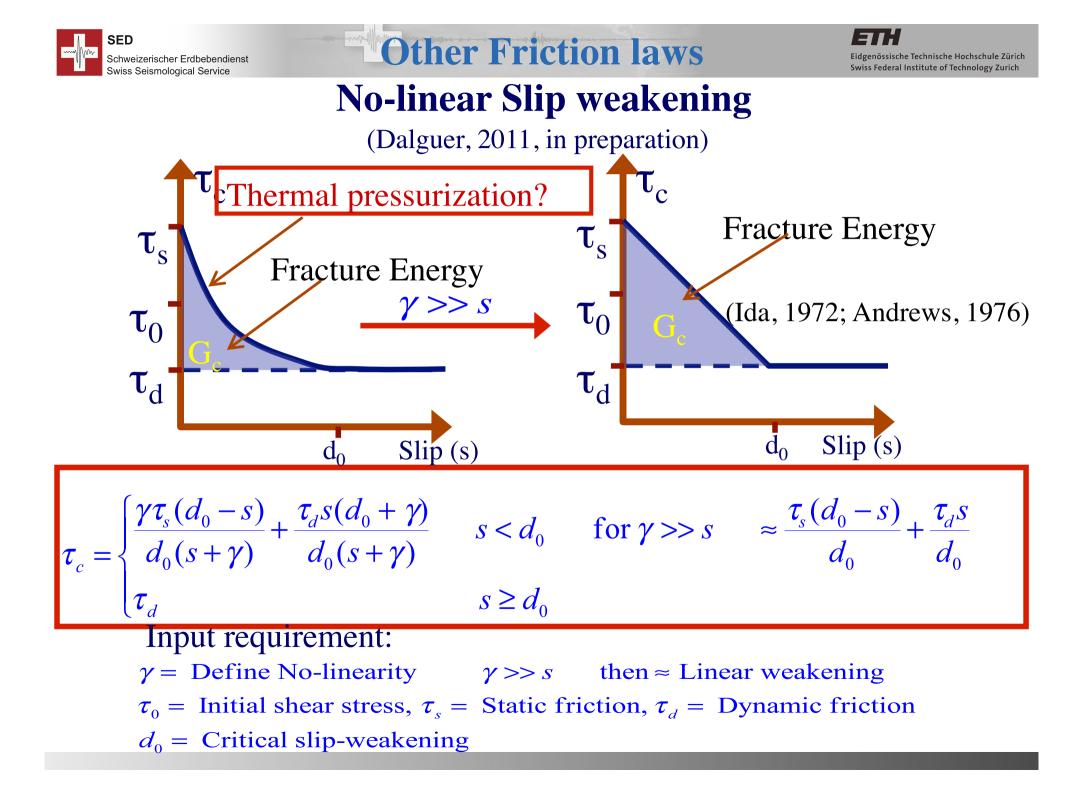
SG inelastic zone - vs - Split-node models Cohesive zone development



Assessment of Methods



Summary of series of papers: (Day, Dalguer, et al, 2005, JGR; Dalguer and Day, 2006, BSSA; 2007, JGR)



Other Friction laws

EITH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Rate and State

(its basis on the aging law: Dieterich, 1986; Ruina, 1983)

$$\tau_{c} = \tau_{c} \left(\sigma_{n}, \dot{s}, \psi \right) = \sigma_{n} \left[\mu_{0} + a \ln \left(\dot{s} / V_{0} \right) + \psi \right]$$

$$\dot{\psi} = -G(\sigma_{n}, \dot{s}, \psi) \quad \text{(Evolution equation)}$$

Input requirement:

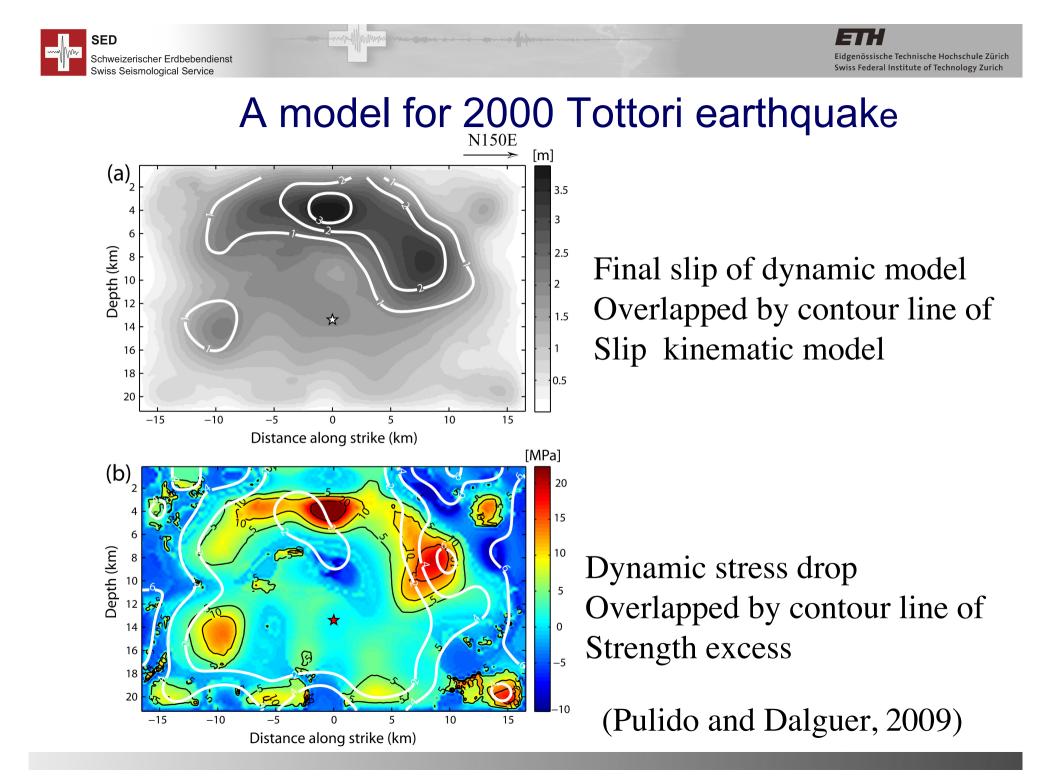
- ψ = Initial state variable
- V_0 = Steady state reference velocity,
- μ_0 = Friction coefficient at steady state V₀

a = friction parameter

Other considerations:

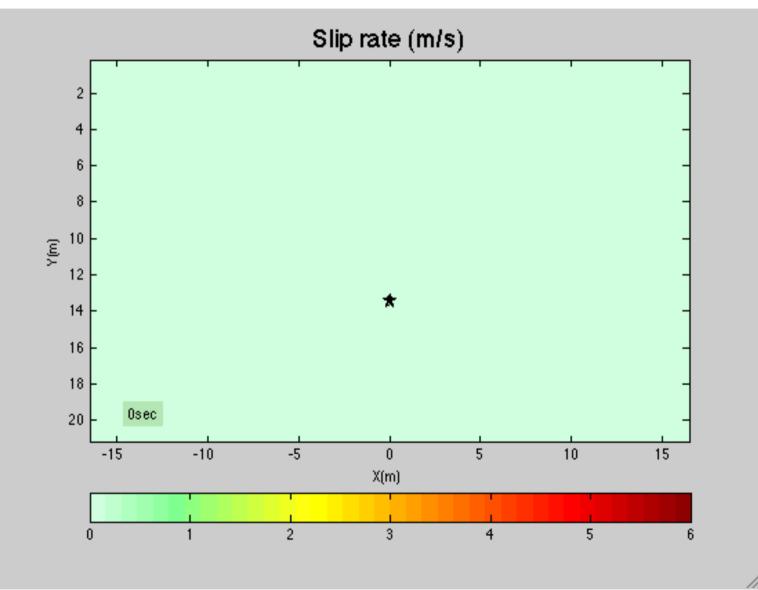
Flash heating

Thermal pressurization of pore fluid



A model for 2000 Tottori earthquake

(Pulido and Dalguer, 2009)



A model for 2000 Tottori earthquake (velocity ground motion)

