

KAUST	Overview	QUEST, July 12-17, 2011
Kine - Cha pla rup par - Kin invo (tel	ematic Earthquake Rupture Models aracterize the time-dependent displacement trajectory of points on t ne without considering the forces/stresses that cause the motions. ture process is entirely specified by the spatio-temporal distribution ameters (slip, slip-velocity function, slip duration, rupture speed). ematic source models are obtained by seismic waveform modeling, erting near-field (strong-motion), regional-distance, and/or far-field eseismic) seismograms.	he rupture The of source i.e. by
• For	seismic-hazard studies, kinematic models are often "simply" simula	ited.
Dyr - Ch so ac ob	namic Earthquake Rupture Models haracterize earthquake rupture based on the material properties arounce volume, and the initial & boundary conditions for the forces/strating on the fault plane. The slip-velocity function at each point on the tained by solving the elasto-dynamic equations of motion under the sumption of some constitution law.	und the esses e fault is

 Dynamic rupture models are obtained from existing kinematic models by an inversion/modeling approach (rarely from waveforms directly), or for assumed initial conditions and stress distributions.

Verification & Validation

m

48

The much needed next steps include verification & validation

- Verification of the forward-modeling codes and inversion techniques
- Validation & benchmarking against synthetic examples with known solutions
- Cooperation between the various source inversion teams to define the "best" source-inversion strategies, in terms of
 - how to parameterize the inversion (depending on data availability)
 - what misfit norm(s) to choose

KAUST

- how to quantify the uncertainty in the inverse solution
- how to disseminate source-inversion results
- The SPICE blindtest on earthquake source inversion lives on

KAUST There was	Additional Slides	QUEST, July 12-17, 2011
		52