When one of the things you don't know is
the number of things you don't know
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2D Seismic surface wave
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Fine grid

Coarse grid

Regular Parameterization
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Regular Parameterization
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Regular Parameterization
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Change Point Modelling of
Paleoclimate Data
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Bayesian Inference

Optimization:
Fix the number of cells minimize the

data misfit d(m) = Z(d g(m)j

Trans-dimensional

Bayesian formulation:

The number of cells is variable and
the solution is a probability

distribution

The solution is an ensemble of models
with variable dimensions



Ensemble Inference

Trans-dimensional
Markov chain

Solution is a large
ensemble of models
with varying
parameterization.




Ensemble Inference

Some useful statistical
information can be
extracted from the

ensemble solution
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Ensemble Inference

Some useful statistical
information can be

extracted from the
ensemble solution
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Tnversion of Receiver Function

(= ; ;

: T ~ Noisy Receiver Function |
Syn’rhe’nc g0 ~NOIsy. Recelver: on......q
experiment £ °]

& ool |
-5 0 5 10Time (5)15 20 25 30
True model

Solution is a large ensemble of
models distributed according
to the target distribution




Synthetic £ =
experiment 2
T o2

True model

Depth(km)

Tnversion of Receiver Function

03f -
02f

~ Noisy Receiver Function |

10

20

30

40

50

60

1I0 1‘5
Time (s)

Sty

p(transition)

! !
20 25 30

| Different ways

to look at the
solution



Application to Tomography

Voronoi Cells are
only defined by their
centres ”

Variable number of cells

Model is defined by:

* Velocity in each cell
* Position of each cell



Voronoi cells are everywhere

(r./“" ﬂfﬁ%/ﬁ“&\ (r- f 2_/—_\&\/
N < N
AN 7 2
s B &
. . b
. { \\
ﬁ’g \{& o i\
tn '5\‘“\_/* -
T f/ﬂ \. x_-} )
(" 7 f 1
L5 / For > g'f
<, A L
ijf ".,-’I: fyﬁ i/::?: ﬁb)//s
G b “A 5
~z é;_ N ﬁ ek g



Voronoi cells are everywhere




Voronoi cells are everywhere




Synthetic experiment
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Current model at different points along the chain
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The Standard approach with a fixed
Regular grid (20*20 nodes)
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Real Data Application

Cross correlation of seismic ambient noise
for Rayleigh wave group velocity at 5s
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Real Data Application

The choice of model complexity is automatic and
depends on estimated data hoise

Km/s
| — —

I 1 I I
36 38 40 42 44 48 48 50 5LZ2 54
120° 130 140° 150°
“ . — =

Data Noise = 22 s Data Noise = 8 s



Hierarchical Bayesian Formulation

Account for the uncertainty in
the level of the data noise

p(m|d) \/%ON exp _%z(di_i(m)i}

Malinverno & Parker (2004)

Level of Data noise is treated as an unknown in the problem



Multi-scale Tomography with
Field Data

Cross correlation of seismic ambient noise for
Rayleigh wave group velocity at bs
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Multi-scale Tomography
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Multi-scale Tomography

Average model (Km/s) Error estimation

Algorithm finds automatically the
correct model complexity and the
correct level of data noise




Application to Joint Inversion

Receiver Function
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Conclusion

Different features of trans-dimensional methods:

1.Adaptive parameterization

2.No need of regularization

3. Hierarchical Bayesian formulation enables to quantify the
information brought by each data set.

This is a general inversion strategy. We have applied to
other types of inverse problems in Earth Science

Seismic tomography

Receiver Functions

Dispersions curves
Electromagnetic data

Regression of palaeoclimate data



