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Part I: Introduction
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Geodynamic Models

• Achievements

I many of them

I global

I high resolution

I comp. efficient

• Challenges

I link to data

(Tackley)
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Recent Earth history (Late Mesozoic/Cenozoic Record):

horizontal motion

plate histories

(Dietmar. Mueller, Earthbyte Project University of Sydney, 2011)
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Recent Earth history (Late Mesozoic/Cenozoic Record):

vertical motion

epi-orogeny

14 Myr:

(modified after Scotese)
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Recent Earth history (Late Mesozoic/Cenozoic Record):

vertical motion

epi-orogeny

14 Myr: shallow

seas in the Tethys

and eastern

Europe

(modified after Scotese)
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Recent Earth history (Late Mesozoic/Cenozoic Record):

90

Myr

(Blakey, Paleoworlds)
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Recent Earth history (Late Mesozoic/Cenozoic Record):

65

Myr

(Blakey, Paleoworlds)
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Recent Earth history (Late Mesozoic/Cenozoic Record):

35

Myr

(Blakey, Paleoworlds)
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Part II: Equations and Scaling
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Conservation of Mass

Focus on longer time scales, and need to suppress acoustic waves. Done

through the so called anelastic approximation (∂ρ/∂t = 0), which yields

mass conservation in the form:

∇ · (ρv) = 0



Intro Equations and Scaling Inversion

Conservation of Momentum

Focus on highly viscous, so called stokes flow.

acceleration = internal friction and driving

inertia︷ ︸︸ ︷
ρ
(∂v

∂t
+ v · ∇v

)
=

∇·σ︷ ︸︸ ︷
−∇p︸ ︷︷ ︸

pressure
gradient

+ η∇2v︸ ︷︷ ︸
viscous

resistance

+ f︸︷︷︸
driving
forces
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Simplifications for Stokes Flow

Focus on highly viscous, so called stokes flow.

ρ
(∂v

∂t
+ v · ∇v

)
︸ ︷︷ ︸

small

0

= −∇p + η∇2v + f

• Accelerations 20 magnitudes smaller, can be omitted

• Instaneous equilibrium of driving/resisting forces

• Elliptic equation, Boundary conditions are part of global equilibrium

This is the reason we model global flow.



Intro Equations and Scaling Inversion

Simplifications for Stokes Flow

Focus on highly viscous, so called stokes flow.

ρ
(∂v

∂t
+ v · ∇v

)
︸ ︷︷ ︸

small

0 = −∇p + η∇2v + f

• Accelerations 20 magnitudes smaller, can be omitted

• Instaneous equilibrium of driving/resisting forces

• Elliptic equation, Boundary conditions are part of global equilibrium

This is the reason we model global flow.



Intro Equations and Scaling Inversion

Simplifications for Stokes Flow

Focus on highly viscous, so called stokes flow.

ρ
(∂v

∂t
+ v · ∇v

)
︸ ︷︷ ︸

small

0

η∇2v︸ ︷︷ ︸
resisting

= ∇p − f︸ ︷︷ ︸
driving

• Accelerations 20 magnitudes smaller, can be omitted

• Instaneous equilibrium of driving/resisting forces

• Elliptic equation, Boundary conditions are part of global equilibrium

This is the reason we model global flow.
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Example: Hager and O’Connells classic instaneous flow

models

• Boundary condition:

I current plate motion

• Output:

I present-day flow

• Lesson:

I no simple flow

geometry

I no stable piles

(Hager and O’Connell, 1978)



Intro Equations and Scaling Inversion

Example: Hager and O’Connells classic instaneous flow

models

• Boundary condition:

I current plate motion

• Output:

I present-day flow

• Lesson:

I no simple flow

geometry

I no stable piles

(Hager and O’Connell, 1978)



Intro Equations and Scaling Inversion

Example: Hager and O’Connells classic instaneous flow

models

• Boundary condition:

I current plate motion

• Output:

I present-day flow

• Lesson:

I no simple flow

geometry

I no stable piles

(Hager and O’Connell, 1978)



Intro Equations and Scaling Inversion

Example: Hager and O’Connells classic instaneous flow

models

• Boundary condition:

I current plate motion

• Output:

I present-day flow

• Lesson:

I no simple flow

geometry

I no stable piles

(Hager and O’Connell, 1978)



Intro Equations and Scaling Inversion

(Torsvik, 2010)
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Lassak et al., 2009

(Lassak etal, 2009)
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Conservation of Energy

Temp changes = advection, conduction and heat sources

∂T

∂t︸︷︷︸
Temp changes

= −v · ∇T︸ ︷︷ ︸
advection

+ κ∇2T︸ ︷︷ ︸
thermal
diffusion

+ H︸︷︷︸
heat sources
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Conservation of Energy

Advection dominates diffusion because the mantle is a good insulator.

Temp changes = advection, conduction and heat sources

∂T

∂t︸︷︷︸
Temp changes

= −v · ∇T︸ ︷︷ ︸
advection

+ κ∇2T︸ ︷︷ ︸
thermal
diffusion

+ H︸︷︷︸
heat sources
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The Peclet Number

Pe =
UL

κ
.

An estimate of the advection dominance in the mantle is given through

the Peclet number, which is of order 104. This indicates that advective

processes in the mantle dominate thermal diffusion by four orders of

magnitude, outside of thermal boundary layers.

Consequence: Thermal gradients are sharp, thermal boundary layers

accommodate large temperature changes, and hence the lateral

temperature variations arising from the boundary layers are high.

(one needs to cool the core.)
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(Trampert, 2004)
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Geodynamic Forward Models

• Schuberth et al., 2008a,b

• Schaber et al., 2009

• Goal:

I quantitative comparisson

with seismic models by

going through the

convection process and

mapping to elastic variation

I testing compositional

mantle models with

dynamically plausible

temperatures
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Histogram Geodynamic Forward Model
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Histograms Tomographic Models
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Seismic Filtering
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Gedankenstütze

0 +400−400

• High resolution (of order 109 grid points) geodynamic forward models

of mantle heterogeneity can be constructed for comparisson to seismic

models
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Part III: Geodynamic Inversions
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The Adjoint equations of mantle convection

∇ · φ = 0

∇ · (η∇φ) + τ∇θ = ∇χ

−∂τ
∂t
−∇ · (τv) + R êr · φ = ∇2τ + δ(x, t − t1)[θ(x, t0)− θI (x)]

Solve a set of unintuitive adjoint equations

• terminal condition on temperature

• adjoint diffusion operator stable vs. time-reversal

• iterative procedure: computationally expensive, but now feasible

⇒ optimise for suitable flow histories (backwards in time)
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An example of our estimate for sub-icelandic mantle, 100 Myrs ago.

• Forward simulation:

I T
mineral physics−−−−−−−−−→ v

I residual forward model vs.

tomography (from Grand)

• Adjoint simulation:

I terminal condition

T
mineral physics←−−−−−−−−− v

I model update for time 100

Myrs ago
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Dynamically supported global topography 40 Myrs ago

• Low lying
Tethys and
Farallon
regions
associated
with active
subduction at
the time.
(Topography is 500

times exagerated.)
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Large temporal Geoid variations implied by our inversions

today

(Blakey, Paleoworlds)
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Large temporal Geoid variations implied by our inversions
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Large temporal Geoid variations implied by our inversions

difference

(Blakey, Paleoworlds)



Conclusion

• Geophysicists from seismology, mineral physics, and geodynamics

together should start exploring time-dependent earth models.

• Large challenges (e.g., seismic resolution, composition, uncertainties

in geologic interpretations) are ahead.

• Large payoff in terms of understanding the dynamics of our planet

waits in return.

(Special thanks to: B. Schuberth, C. Moder, J. Oeser, M. Mohr, A.

Horbach, L. Colli, T. Chust and everyone from the Munich group!)



Thank you!



Continuum: Elastic or Viscous?

Earth is viscoelastic:

• elastic over short times (earthquake waves!)

• viscous over long times (plate tectonics!)



Continuum: Elastic or Viscous?

Earth is viscoelastic:

• elastic over short times (earthquake waves!)

• viscous over long times (plate tectonics!)

Maxwell time = viscous relaxation to 1/e:

τM =
η

G

⇒ Lithosphere (τM = 10, 000 yr) = viscous fluid



Viscous Behavior: Creep

Mechanisms:

• Nabarro-Herring creep

(bulk diffusion)

• Coble creep

(grain boundaries)

• Dislocation creep



Viscous Behavior: Creep

Mechanisms:

• Nabarro-Herring creep

(bulk diffusion)

• Coble creep

(grain boundaries)

• Dislocation creep

Empirical Arrhenius-type equations:

k = A e−Qcreep/(R T )

(R: gas constant; Qcreep: activation energy)

• T in exponent: sensitive

• strongest = cold

• dominant: dislocation creep



Mantle Circulation Models

0 +400−400

• Mantle convection: basics well understood

• Needed: comparison with observations (tomography!)

• Problem: unknown initial conditions

⇒ assimilation of surface velocities or backwards in time



Prev. TERRA MCMs: Plates from Lithgow-Bertelloni

• Coarse time stepping

(10–20 Ma: artifacts like

“jumping” slabs)

• Too short timespan

(< convective time

scale)

• Errors (Tethys!)

⇒ Need for better plate

boundaries + new software



Thank you!



Laboratory Experiments?

• Fast deformation

⇒ other creep mechanisms

• Small samples

⇒ thermal equilibrium



Assumptions

• Spherical Earth, constant gravity: small error, only vertical direction

• Constant density: error less than 1% + in vertical direction

• Incompressible: K � p in lithosphere ⇒ volume change < 0.5%

• Anelastic rheology: elasticity small + unknown over geologic times

• Isostatic equilibrium: τM � age of the Earth ⇒ equilibrated

• Constant thermal properties, mineralogy: correction via grid (heat)

• Newtonian rheology: approximation, true rheology not known



SHELLS: Only Momentum Equation

Temporal development of faults:

• Behavior of lithosphere depends on its past

• Initial conditions unknown ⇒ cannot create present-day state

• Future state unknown ⇒ from present-day to future is meaningless

Fault geometry from current forces: continuum deformation and fault

formation is highly nonlinear ⇒ chaotic

⇒ Fault geometry as input, no energy equation needed



Comparison with GPS data

• Problem:

I GPS signal includes elastic deformation

I SHELLS omits elasticity

• Modifications to the model:

I Brittle part of fault = locked

I Slip in brittle part = compensated by elastic deformation

I Comparison of elastic deformation with GPS data
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