


Motivation

To tell you a little bit about how many in the geodetic

community deal with data errors and estimate model
parameter uncertainties

Outline
Geodetic data
Estimating data errors
Making data covariance matrices

Estimating model parameter uncertainties
Applications



What are Geodetic Data?

Global Navigation Satellite Systems: GPS, Glonass, Galileo, Beidou
INSAR

Air/satellite photo offsets
SAR image offsets
Leveling, Tiltmeters
Borehole strainmeters
Creepmeters R R
Very Long Baseline Interferometry (VLBI)
Satellite Laser Ranging (SLR)

Electronic Distance Measurements (EDM)
Triangulation

Underwater acoustic/GPS measurements
Fault rupture offset measurements
Coastal uplift, lake-level tilts
Gravimetric data

and probably many more.....
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INSAR and InSAR Data Errors




Synthetic Aperture Radar (SAR)

Typical radar satellite
configuration:

Satellite elevation is typically

~7-800 km
Swath width ~100km
Antenna 1m x 10m

Look angle usually 20-50
degrees from vertical
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INSAR Phase Difference due to Deformation

Range decrease

N\

Measured
phase




INSAR Phase Difference due to Deformation

Example: Uplift of
Darwin Volcano,
Galapagos

Range decrease

Measured ,
phase :




AR,

INSAR compared to other geodetic techniques

Advantages:
Spatial sampling

Global coverage

Existing database

Inexpensive, safe

Limitations:

Poor temporal resolution
1D displacements

Decorrelation



What Causes Errors in InNSAR Data?

DEM errors

Co-registration errors
Inaccurate orbit information
Unwrapping errors
Geocoding mistakes

Decorrelation

Atmospheric artifacts




Phase Difference due to the Atmosphere

Phase difference:

»...// Seconq sat_elllte
= pass with signal

Where signal delay D,,,, depends on the - delay
refractivity index n in the atmosphere: v=¢/n (n=1
for vacuum)

Usually refractivity N is used: N=(n-1)*10°

Propagation delay through the atmosphere (in
meters):

n

Refractivity composed of:

and refractivity is clearly:




Unwrapped
image

Atmospheric errors sometimes
correlate with topography

The turbulent part is smooth, has
more power at the larger spatial
scales

Sometimes shows anisotropic
patterns

Volcanic inflation
of tens of cm

Decorrelation
due to dense
vegetation
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How do we Estimate Errors in INSAR Data?
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Zirkuh, Iran, M, 7.2

-

The interferogram contains
both deformation and
atmospheric signals

Mask out deformation area

Estimate error statistics Iin
the non-deforming region

Assume stationarity

Start by building an
empirical isotropic semi-
variogram
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Sudhaus and Jonsson, GJI, 2011
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Covariance Function Fitting

Sudhaus and Jonsson, GJI. 2009

1 = To obtain a covariance value for
+ variance any distance, we fit a covariance

—— covariogram

— covariance function function to the covariogram,

common function types are
i / h‘ ascending data 1

desrsnding ddis . and a function allowing for anti-
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With a covariance function, we can
form the data covariance matrix
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Large Covariance Matrices! |

2003 Bam (lran) Earthquake

= First step is phase
unwrapping

* This interferogram has 6
million data points

= The corresponding data
covariance matrix 2, includes
3.6 x 1013 elements!
(~150TB)

= What to do?

—> Data reduction




INSAR Data Reduction

"
|

Quadtree partitioning or

Subsampling
= = Assign e.g. the mean or
median of displacement
“p— each quadtree square to
i e i the center of the square

. = Here the mean, can use
linear subsampling:

* From 6 million data points
to 600, in this case




Error Propagation

i u

How do we get an error
estimate for each of the
down-sampled points?

When using a linear
subsampling:
we can simply propagate
the full data covariance
matrix:

One problem is the size of
24 (~150TB)

Still possible to calculate,
e.g. by storing only single
lines of 2, at once

2., Only 600 X 600 matrix
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Fault Modeling using INSAR Data




Fault Modeling

First let’s assume the data vector d, , can be
described by a finite number of model
parameters m:

where g relates slip on a fault (described by m)
to surface displacements. Then we want to
minimize

Where weighting matrix W is found by
decomposition (Cholesky) of the inverse of the
covariance matrix:

The Green’s functions can be from elastic
homogeneous or layered half-space, or some
other earth model. Use 10 model parameters
that describe the geometry and displacement
across a rectangular surface:
mT=[L,W,d,5,d,xn,Xe,51,52,53]

Vz

Thus, the problem is to find
the set of model parameters
m that best match our
observed displacements d



Fault Modeling

We search for the set of
model parameters m
that minimizes:




Fault Modeling

" For moderate-sized earthquake, do the ]
fault parameter estimation in two steps:

= First, we search for the for the best set of
parameters of one or more rectangular
faults using non-linear optimization .
scheme, like simulated annealing, followed
by a derivative based method (repeat a few [ Cenelietal, 2000
times to ensure stability)

Misfit

" |n the second step, we use the location,
strike, and dip of the fault plane found in

1
0 o 350

Strike ()

step 1, expand the fault’s length and width, =t

Izmit (Turkey)

discretize the fault plane into many fault
patches, and invert for fault spatially
variable slip using a certain degree of
smoothening

1
D

3 [km] Cakir et al., 2004
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How can we estimate the

Model Parameter Uncertainties?
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Kleifarvatn EQ

Kleifarvatn Earthquake M,5.9

= QOccurred in June 2000, 15 km
south of Reykjavik

= North-south, near-vertical,
right-lateral strike-slip
earthquake

= 3D volume shows aftershocks
and the “envelope” shows the
range of possible fault
geometries as estimated from
GPS and InSAR



Kleifarvatn InSAR and GPS Data
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= Here we use all the tricks described:
* Unwrap the InSAR data
* Generate sample covariograms
* Fit-covariance functions
* Subsample InSAR data
* Build covariance matrices
* Combine data sets

= Estimate optimal model geometry and
slip distribution
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Kleifarvatn Fault Model Uncertainty Estimation

Sudhaus and Jénsson, GJI. 2009

Northing fim]
-3
H

70821

7078

a) Ascending 10um o
\\ il
™o
o) >
t :
t:l H
' I
b) Descending _om
£ =
j: -
,:..,_1, X ’(‘-—\ ]
= .
w0 w4 T w0
Easting [km]

-0.08 -0.08 -0.04 -0.02 0 0.02 0.04 0.06 0.08 [m]

Generate 2500 synthetic data errors

Add each error realization to the data and
estimate fault geometry and slip
distribution using biased data

Results in 2500 different source models
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Width [km]

Optimal
dip value 83°

95% quantile
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Kleifarvatn Fault Model and Slip Distribution

o) adwedan
el N = 3D volume shows an envelope
[ indicating the variability of the
£ Tlo . resulting 2500 fault geometries

= Slip distribution is simple, shows
the slip of the optimal model

%y 70
e e A A  An s = Slip values of the 2500 models
Easting [km]

are shown as white dots

= Slip magnitude and rake well
constrained near the surface

= Poor resolution with depth

dip slip [m]
subfaults along dip [km]

0 1 2 3 4 5 -] r i 8 9 10

subfaults along strike (S -> N) [km]
strike slip [m]

Sudhaus and Jénsson, GJI. 2009
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What can we do with Model Parameter Errors?




Applications of Model Parameter Uncertainties

C) |ACFS| - 20 > 0.05 MPa: IMO Catalog
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Coulomb Failure Stress
changes (ACFS) near the
Kleifarvatn fault

We have estimated
uncertainties for the fault
geometry and slip
distribution

Propagate fault errors to
obtain ACFS errors

Reduces the size of
“reliable” CFS changes

Islands of reliable and
strongly
positive/negative ACFS
remain



Conclusions

Important to remember that all data are uncertain

Geodetic data uncertainties are fairly well understood, in many
cases, but can be quite variable and tricky to estimate

Correlations are important, need full data covariance matrices

Covariance matrices help in combining different data in model
parameter estimations, e.g. multiple interferograms. However,
different types of data can still be complicated to combine

Here we only discussed the influence of estimated data errors on
model parameter uncertainties. When SNR is high, model errors
dominate (e.g. homogenous/layered halfspace simplifications)

Fault model uncertainties are more important than a single “best-
fit” candidate fault model, also for fault model applications, e.g.
when comparing CFS changes with aftershock locations
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