Modeling seismic noise by normal mode summation

Lucia Gualtieri^{1,5*} E. Stutzmann¹, Y. Capdeville², F. Ardhuin³, M. Schimmel⁴, A. Mangeney¹, and A. Morelli⁵ *gualtieri@ipgp.fr

¹ Institut de physique du globe de Paris (IPGP), France
² CNRS, Laboratoire de Planétologie et Géodynamique de Nantes, France
³ Laboratoire d'Océanographie Spatiale, Ifremer, Plouzané, France
⁴ Institute of Earth Sciences Jaume Almera, CSIC, Barcelona, Spain
⁵ Instituto Nazionale di Geofisica e Vulcanologia (INGV), Bologna, Italy

GOAL modeling the secondary microseisms peak

Theory by Longuet-Higgins (1950):

"two progressive waves of the same wave-length travelling in the opposite direction generate a second-order pressure variation which is not attenuated with depth"

 the mean pressure varies with twice the frequency of the ocean waves.

Discretization of seismic noise sources on a grid

OCEAN WAVE MODEL : (WAVEWATCH *III^R*, Ardhuin et al., 2011)

- grid step of 0.5 degree;
- 6-hourly wind analyses from the European Centre for Medium-Range Weather Forecasts;
- coastal reflections of ocean waves.

SOURCES DISCRETIZATION:

- spherical distribution of 50610 point sources;
- grid step of 50 km;
- vertical force with random phase

Vertical force associated with microseisms

Ocean wave model \Rightarrow pressure just below the surface of the ocean produced by the ocean wave-wave interaction \Rightarrow vertical force applied just below the ocean surface

Lucia Gualtieri (IPGP-INGV)

Effect of the bathymetry in an half space

L-H analytical computation vs Normal mode computation

Longuet-Higgins' analytical computation (1950)

Effect of the bathymetry in an half space

L-H analytical computation vs Normal mode computation

Longuet-Higgins' analytical computation (1950)

Normal mode computation T=3-12 sec - ocean: 1-10 km

L-H analytical computation vs Normal mode computation

Longuet-Higgins' analytical T=3-12 sec - ocean: 1-10 km computation (1950) 2 4000 3000

Normal mode computation

Effect of the bathymetry in an half space

Amplification of 3 km depth

Normal mode computation T=3-12 sec - ocean: 1-10 km

Longuet-Higgins' analytical computation (1950)

Effect of the bathymetry in an half space

Amplification of 7 km depth

Normal mode computation T=3-12 sec - ocean: 1-10 km

Longuet-Higgins' analytical computation (1950)

CODE: MINOS program (Gilbert, Woodhouse and Masters) modified by Y. Capdeville and NMS program realized by Y. Capdeville.

Station SSB

Station CAN

We are able to model the amplitude of the secondary microseism using normal mode summation:

- simulating the pressure at the surface of the ocean by point vertical forces with random phase;
- calculating the vertical force from the pressure product by the ocean wave-wave interaction;
- introducing the effect of the bathymetry in the computation and using a more realistic model than an half space.

Short term activities

- evaluate
 - the regional and global scale sources;
 - the effect of the sediment on noise modeling;
 - the effect of the coastal reflection as function of geographical region;
- modeling of the fundamental mode, overtones and body waves;

Long term activities

 investigating the effect of the 3D Earth structure on seismic noise modeling (spectral element technique).

THANK YOU FOR YOUR ATTENTION

Appendix

Vertical force associated with microseisms 1/2

1- From power spectral density of the vertical displacement:

$$PSD = \int_0^{2\pi} \int_0^{\pi} \frac{2\pi c_1^2}{\rho_s^2 \beta^5} \times \underbrace{\underbrace{\rho_w^2 g^2 f_s E^2(f) l(f)}_{[Pa^2 \cdot m^2 \cdot s]]}}_{[Pa^2 \cdot m^2 \cdot s]]} \times \frac{exp \frac{-2\pi f_s \Delta}{QU}}{R_E \sin \alpha} \times R^2 \sin \Phi' d\lambda' d\Phi'$$

2- we can calculate the vertical pressure generate by ocean waves:

$$P = \sqrt{\rho_w^2 g^2 E^2(f) I(f) df}$$

3- and then the vertical force:

$$F = P \times \left(R^2 \sin \Phi' d\lambda' d\Phi' \right)$$
 [N]

for each frequency, latitude and longitude.

Vertical force associated with microseisms 2/2

Ocean wave model \Rightarrow pressure at the surface of the ocean produced by the ocean wave-wave interaction \Rightarrow vertical force applied at the surface

The synthetic seismogram can be also written doing a separation of the **spheroidal** and the **toroidal** modes:

 $u = {}_{n} \mathrm{U}_{l} Y_{l}^{m}(\Theta, \Phi) \hat{e}_{r} + {}_{n} \mathrm{V}_{l} \nabla_{1} Y_{l}^{m}(\Theta, \Phi) + {}_{n} \mathrm{W}_{l} (\hat{e}_{r} \times \nabla_{1}) Y_{l}^{m}(\Theta, Phi)$

where $Y_l^m(\Theta, \Phi)$ are the spherical harmonics.

It is more useful to expand the (r, Θ, Φ) components of a vector in *canonical base* using the generalized spherical harmonics $Y_l^{Nm}(\Theta, \Phi)$ (Phinney and Burridge, 1973):

$$\vec{u} = \begin{cases} \gamma_I \Omega_0^l (_n V_I - i_n W_I) Y_I^{-m} & \to u^- \\ \gamma_{I_n} U_I Y_I^{0m} & \to u^0 \\ \gamma_I \Omega_0^l (_n V_I + i_n W_I) Y_I^{+m} & \to u^+ \end{cases}$$

here: $N = (+, 0, -), \ \gamma_I = \sqrt{\frac{2l+1}{4\pi}} \text{ and } \Omega_0^l = \sqrt{\frac{l(l+1)}{2}}.$

w

Synthetic seismogram by normal mode summation 2/4

Instrumental vector: Receiver vector located in (r_r, Θ_r, Φ_r)

$$\left\{ \begin{array}{l} v^- = \frac{1}{\sqrt{2}} (v_\Theta + i v_\Phi) \\ v^0 = v_r \\ v^+ = \frac{1}{\sqrt{2}} (-v_\Theta + i v_\Phi) \end{array} \right. \label{eq:velocity}$$

<u>Receiver term:</u> $_n \mathbf{R}_l(r_r, \Theta_r, \Phi_r) = \vec{u} \cdot \vec{v} = u^0 v^0 - u^+ v^- - u^- v^+$

	SPHEROIDAL	MODES			
N=-1	$_{n}\mathrm{R}_{l}^{-}(r_{r},\Theta_{r},\Phi_{r})=$	$\sqrt{\frac{2l+1}{4\pi}}\frac{\sqrt{l(l+1)}}{2}$	$(v_{\Theta} - iv_{\Phi})$	"V	$Y_l^-(\Theta_r, \Phi_r)$
N=0	$_{n}\mathrm{R}_{l}^{0}(r_{r},\Theta_{r},\Phi_{r}) =$	$\sqrt{\frac{2l+1}{4\pi}}$	Vr	"U	$Y_l^0(\Theta_r,\Phi_r)$
N=+1	$_{n}\mathrm{R}_{l}^{+}(r_{r},\Theta_{r},\Phi_{r}) =$	$\sqrt{\frac{2l+1}{4\pi}} \frac{\sqrt{l(l+1)}}{2}$	$(-v_{\Theta} - iv_{\Phi})$	"V	$Y_l^+(\Theta_r,\Phi_r)$
	TOROIDAL	MODES			
N=-1	$_{n}\mathrm{R}_{l}^{-}(r_{r},\Theta_{r},\Phi_{r})=$	$\sqrt{\frac{2l+1}{4\pi}} \frac{\sqrt{l(l+1)}}{2}$	$(-v_{\Phi}-iv_{\Theta})$	"W	$Y_l^-(\Theta_r, \Phi_r)$
N=0	$_{n}\mathrm{R}_{l}^{0}(r_{r},\Theta_{r},\Phi_{r}) =$			0	
N=+1	$_{r}\mathrm{R}_{l}^{+}(r_{r},\Theta_{r},\Phi_{r})=$	$\sqrt{\frac{2l+1}{4-2}} \frac{\sqrt{l(l+1)}}{2}$	$(v_{\Phi} - iv_{\Theta})$	"W	$Y_{l}^{+}(\Theta_{r},\Phi_{r})$

Synthetic seismogram by normal mode summation 3/4

Point force: $f(\vec{r}) = F\delta(\vec{r} - \vec{r_0})$ in $\vec{r_0} = (r_s, \Theta_s, \Phi_s)$

$$\left\{ \begin{array}{l} F^- = \frac{1}{\sqrt{2}} (F_\Theta + iF_\Phi) \\ F^0 = F_r \\ F^+ = \frac{1}{\sqrt{2}} (-F_\Theta + iF_\Phi) \end{array} \right.$$

Source term:

 $\overline{{}_{n}S_{l}(r_{s},\Theta_{s},\Phi_{s})} = \int_{V_{E}} f(\vec{r})_{n} u_{l}^{*}(\vec{r}) dV = F \cdot {}_{n} u_{l}^{*}(\vec{r_{0}}) = F^{-}u^{-} + F^{0}u^{0} + F^{+}u^{+}$

	SPHEROIDAL	MODES			
N=-1	$_{n}\mathrm{S}_{l}^{-}(r_{s},\Theta_{s},\Phi_{s})=$	$\sqrt{\frac{2l+1}{4\pi}}\frac{\sqrt{l(l+1)}}{2}$	$(F_{\Theta}+iF_{\Phi})$	${}_{n}V_{I}$	$Y_l^-(\Theta_s,\Phi_s)$
N=0	$_{n}\mathrm{S}_{I}^{0}(r_{s},\Theta_{s},\Phi_{s})=$	$\sqrt{\frac{2l+1}{4\pi}}$	F _r	"U	$Y^0_l(\Theta_s,\Phi_s)$
N=+1	$_{n}\mathrm{S}_{l}^{+}(r_{s},\Theta_{s},\Phi_{s})=$	$\sqrt{\frac{2l+1}{4\pi}} \frac{\sqrt{l(l+1)}}{2}$	$(-F_{\Theta}+iF_{\Phi})$	${}_{n}V_{I}$	$Y_l^+(\Theta_s,\Phi_s)$
	TOROIDAL	MODES			
N=-1	$_{n}\mathrm{S}_{l}^{-}(r_{s},\Theta_{s},\Phi_{s})=$	$\sqrt{\frac{2l+1}{4\pi}}\frac{\sqrt{l(l+1)}}{2}$	$(-F_{\Phi}+iF_{\Theta})$	${}_{n}W_{I}$	$Y_l^-(\Theta_s, \Phi_s)$
N=0	$_{n}S_{l}^{0}(r_{s},\Theta_{s},\Phi_{s}) =$			0	
N=+1	$_{n}\mathrm{S}_{l}^{+}(r_{s},\Theta_{s},\Phi_{s})=$	$\sqrt{\frac{2l+1}{4\pi}} \frac{\sqrt{l(l+1)}}{2}$	$(F_{\Phi}+iF_{\Theta})$	${}_{n}W_{l}$	$Y_l^+(\Theta_s,\Phi_s)$

Synthetic seismogram by normal mode summation 4/4

<u>VERTICAL</u> Point force: $f(\vec{r}) = F\delta(\vec{r} - \vec{r_0})$ in $\vec{r_0} = (r_s, \Theta_s, \Phi_s)$

$$\begin{cases} F^{-} = \frac{1}{\sqrt{2}} (F_{\Theta} + iF_{\Phi}) \\ F^{0} = F_{r} \\ F^{+} = \frac{1}{\sqrt{2}} (-F_{\Theta} + iF_{\Phi}) \end{cases}$$

Source term:

 $\overline{{}_{n}S_{l}(r_{s},\Theta_{s},\Phi_{s})} = \int_{V_{E}} f(\vec{r})_{n} u_{l}^{*}(\vec{r}) dV = F \cdot {}_{n} u_{l}^{*}(\vec{r_{0}}) = F^{-} u^{-} + F^{0} u^{0} + F^{+} u^{+}$

	SPHEROIDAL	MODES			
N=-1	$_{n}\mathrm{S}_{l}^{-}(r_{s},\Theta_{s},\Phi_{s})=$	$\sqrt{\frac{2l+1}{4\pi}} \frac{\sqrt{l(l+1)}}{2}$	$(F_{\Theta} + iF_{\Phi})$	${}_{n}V_{I}$	$Y_l^-(\Theta_s, \Phi_s)$
N=0	$_{n}\mathrm{S}_{l}^{0}(r_{s},\Theta_{s},\Phi_{s})=$	$\sqrt{\frac{2l+1}{4\pi}}$	F _r	${}_{n}U_{l}$	$Y^0_I(\Theta_s,\Phi_s)$
N=+1	$_{n}\mathrm{S}_{l}^{+}(r_{s},\Theta_{s},\Phi_{s})=$	$\sqrt{\frac{2l+1}{4\pi}} \frac{\sqrt{l(l+1)}}{2}$	$(-F_{\Theta}+iF_{\Phi})$	${}_{n}V_{I}$	$Y_l^+(\Theta_s, \Phi_s)$
	TOROIDAL	MODES			
N=-1	$_{n}\mathrm{S}_{l}^{-}(r_{s},\Theta_{s},\Phi_{s})=$	$\sqrt{\frac{2l+1}{4\pi}} \frac{\sqrt{l(l+1)}}{2}$	$(F_{\Theta} + iF_{\Phi})$	${}_{n}W_{I}$	$Y_l^-(\Theta_s, \Phi_s)$
N=0	$_{n}\mathrm{S}_{l}^{0}(r_{s},\Theta_{s},\Phi_{s}) =$			0	
N=+1	$_{n}\mathrm{S}_{l}^{+}(r_{s},\Theta_{s},\Phi_{s})=$	$\sqrt{\frac{2l+1}{4\pi}}\frac{\sqrt{l(l+1)}}{2}$	$(-F_{\Theta}+iF_{\Phi})$	${}_{n}W_{l}$	$Y_l^+(\Theta_s,\Phi_s)$

Validation of NMS theory using a force: Mount St Helens landslide (1981) 1/2

<u>CODE:</u> MINOS program (Gilbert, Woodhouse and Masters) modified by Y. Capdeville and NMS program realized by Y. Capdeville. This code was validated to be used only with moment tensor.

PURPOSE: simulate an event using a force as source to validate the theoretical/analytical computation of normal modes summation: - **vertical force:** no earthquake or landslide data. - **horizontal force:** Mount St Helens landslide (Kanamori & Given, 1982): Horizontal force direction: *S*5°*W*

Amplitude of the force: $10^{13}N$

Earth model used in the computation: PREM **bandpass filter** between 50 *s* and 200 *s*

Validation of NMS theory using a force: Mount St Helens landslide (1981) 2/2

ightarrow The amplitude not so well retrieved ightarrow 1D model

 \rightarrow It is necessary increase *n* to simulate the others peaks (here only n = 30)

The phase of the synthetic seismograms is correct and the the main peak is retrieved in the right position.

Effect of the bathymetry: PREM model

Longuet-Higgins' analytical computation (1950)

Normal mode computation T=3-12 sec - ocean: 1-10 km

