

Structure of the European Upper Mantle Revealed by Adjoint Tomography

Hejun Zhu, Ebru Bozdag, Daniel Peter and Jeroen Tromp
Theoretical & Computational Seismology research group
Department of Geosciences, Princeton University
May 25th, 3rd QUEST Workshop, Slovakia

Acknowledgement: All current & former students and postdoctoral scholars in Tromp's group

Department of Geosciences

WARNING! Hot materials

Outline

I. Introduction

2. Setup adjoint tomography

Data selection

Source inversion (see Ebru's talk)

Initial model EU00 (crust & mantle)

Model parameterization

Misfit functions

Misfit gradients

- 3. New European upper mantle model EU30
- 4. Model Comparisons
- 5. Conclusion

PRINCETO UNIVERSIT

global.shakemovie.princeton.edu

Spectral-element method; 3D Earth model: S362ANI+Crust2.0; Shortest period: 17 seconds

Hejun Zhu

Department of Geosciences

Modern numerical simulations and Imaging the Earth

Spectral-element method; 3D Earth model: S362ANI+Crust2.0; Shortest period: 17 seconds

Hejun Zhu

Department of Geosciences

Modern numerical simulations and Imaging the Earth

Spectral-element method; 3D Earth model: S362ANI+Crust2.0; Shortest period: 17 seconds

Hejun Zhu

Department of Geosciences

- Maghrebides-Calabrian-Apennines-Alps arc

- Maghrebides-Calabrian-Apennines-Alps arc

- Carpathian-Vrancea-Dinarides arc

Dataset

Sesame cluster PICSciE www.princeton.edu/researchcomputting

earthquakes	stations	iterations	simulations	CPU hours	measurements
190	745	30	17,100	2.3 million	123,205

Hejun Zhu

Department of Geosciences

SPECFEM3D mesh for EPcrust

S362ANI at 75 km depth

Hejun Zhu

Department of Geosciences

Radial anisotropic sensitivity kernels

Radial anisotropic sensitivity kernels

Hejun Zhu

Department of Geosciences

Hejun Zhu

Department of Geosciences

Radial anisotropic sensitivity kernels

Hejun Zhu

Department of Geosciences

Misfit function for EU00

Np: number of measurements per event Ns: number of events Nc: number of contributions

Department of Geosciences

EU00 versus iterative models at 75 km

Hejun Zhu

Department of Geosciences

EU00 versus iterative models at 75 km

Geological features of EU30 at 75 km

Department of Geosciences

Central graben

Geological features of EU30 at 75 km

Department of Geosciences

Central graben Armorican massif

Geological features of EU30 at 75 km

30°N

Central graben

Armorican massif

Pyrenees

Geological features of EU30 at 75 km

30°N

Department of Geosciences

Geological features of EU30 at 75 km

Tornquist-Teisseyre Zone

Central graben

Armorican massif

Pyrenees

Hejun Zhu

Department of Geosciences

Geological features of EU30 at 75 km

Central graben

Armorican massif

Pyrenees

Adria plate

Triple junction

Cyprus arc

Department of Geosciences

Hejun Zhu

Department of Geosciences

Geological features of EU30 at 75 km

Department of Geosciences

Geological features of EU30 at 75 km

Tornquist-Teisseyre Zone

Central graben Tyrrhenian sea Armorican massif Pyrenees Adria plate Triple junction Cyprus arc

Department of Geosciences

of EU30 at 75 km

Tornquist-Teisseyre Zone

Central graben	Tyrrhenian sea			
Armorican massif	Massif Central			
Pyrenees				
Adria plate				
Triple junction				
Cyprus arc				

Geological features

Department of Geosciences

Department of Geosciences

Central graben	Tyrrhenian sea
Armorican massif	Massif Central
Pyrenees	Rhine graben
Adria plate	Harz hotspot
Triple junction	Bohemian massif
Cyprus arc	

Geological features of EU30 at 75 km

30°N.

Department of Geosciences

Geological features of EU30 at 75 km

Tornquist-Teisseyre Zone

Central graben	Tyrrhenian sea
Armorican massif	Massif Central
Pyrenees	Rhine graben
Adria plate	Harz hotspot
Triple junction	Bohemian massif
Cyprus arc	

★ CSVF: Central Slovakian Volcanic Field

Hejun Zhu

Department of Geosciences

Central graben	Tyrrhenian sea
Armorican massif	Massif Central
Pyrenees	Rhine graben
Adria plate	Harz hotspot
Triple junction	Bohemian massif
Cyprus arc	CSVF

Geological features of EU30 at 75 km

★ CSVF: Central Slovakian Volcanic Field

Hejun Zhu

³0°_N

Department of Geosciences

Central graben	Tyrrhenian sea
Armorican massif	Massif Central
Pyrenees	Rhine graben
Adria plate	Harz hotspot
Triple junction	Bohemian massif
Cyprus arc	CSVF

Geological features of EU30 at 75 km

★ CSVF: Central Slovakian Volcanic Field

Hejun Zhu

30°N

Department of Geosciences

Central graben	Tyrrhenian sea
Armorican massif	Massif Central
Pyrenees	Rhine graben
Adria plate	Harz hotspot
Triple junction	Bohemian massif
Cyprus arc	CSVF
	Pannonian basin

Geological features of EU30 at 75 km

★ CSVF: Central Slovakian Volcanic Field

Hejun Zhu

30°N

Department of Geosciences

Geological features of EU30 at 75 km

10°N

Tornquist-Teisseyre Zone

Central graben	Tyrrhenian sea
Armorican massif	Massif Central
Pyrenees	Rhine graben
Adria plate	Harz hotspot
Triple junction	Bohemian massif
Cyprus arc	CSVF
	Pannonian basin

>₀°_N.

★ CSVF: Central Slovakian Volcanic Field

Hejun Zhu

Department of Geosciences

Central graben	Tyrrhenian sea
Armorican massif	Massif Central
Pyrenees	Rhine graben
Adria plate	Harz hotspot
Triple junction	Bohemian massif
Cyprus arc	CSVF
	Pannonian basin
	Anatolian plate

Geological features of EU30 at 75 km

★ CSVF: Central Slovakian Volcanic Field

Hejun Zhu

30°N

Department of Geosciences

Hellenic arc

Hellenic arc

Complicated triple slab structures

Complicated triple slab structures

More cross sections

More cross sections

More cross sections

Department of Geosciences

Department of Geosciences

Model Comparisons, not easy !

I. Body waves versus Surface waves (blind men and an elephant)
I. I. D. reference model (PREM versus IASP91 versus STW105)
Shear wave versus Compressional wave (apple versus orange)
Color scheme

Department of Geosciences

D

Conclusion

 3D starting models + 3D forward simulations (Spectral-Element method) + 3D Fréchet derivatives (Adjoint method)

Many interesting structures naturally emerge from the smooth background model

Bridging the gap between high-resolution body-wave tomography and lower resolution inversions based on long period body waves, surface waves and free oscillations

Model comparisons is challenging but satisfactory

Depth changes from source inversions

Effects of three-dimensional Earth structure on CMT earthquake parameters

Vala Hjörleifsdóttir*, Göran Ekström

Lamont-Doherty Earth Observatory of Columbia University, 61 Route 9W, Palisades, NY 10964, USA

new depth [km]

Depth changes from source inversions

50

b

- 250

200

150

100

50

0

250

200

 $\Delta depth (km) = 5$

°4'0

50°E

0

-5

-10

-15

60°E

New CMT depth (km)

New CMT depth (km) 40 30 а 20 Effects of three-dimensional Earth structure on CMT earthquake parameters Vala Hjörleifsdóttir*, Göran Ekström 10 Lamont-Doherty Earth Observatory of Columbia University, 61 Route 9W, Palisades, NY 10964, USA 0 20 30 10 40 50 70 0 Global CMT depth (km) 60 35 С 50 Event Number **Q** 28 21 14 100 150 50 40 Global CMT depth (km) 0 10 5 15 -15 -10 -5 0 30 ∆depth (km) 20 BMS 0 S 10 S_{rs} 0 00 5°°4 20 40 60 true depth [km] °0°, 20. N 50° W 40°W 30°W 40°E (Liu et al 2004 BSSA) 30°E 20[%]W 10⁶W 20°E

Hejun Zhu

Department of Geosciences

Princeton University

0°

10^⁰E