

Deep structure of crust and mantle beneath Iberia and western Mediterranean from P and S receiver functions and SKS waveforms

I. Morais, L.Vinnik, G.Silveira, L.Matias, S.Kiselev

TopoMed Plate re-organization in the western Mediterranean: Lithospheric causes and topographic consequences

Motivation

3rd QUantitative estimation of Earth's seismic sources and STructure - 2012

UEST

Objectives

- •To map the topography of the main inner discontinuities, particularly in the mantle Transition Zone:
- To understand the structure of the lithosphere-asthenosphere;
- •To improve our understanding of the anisotropy and heterogeneity in the Iberia and western Mediterranean region;

Methods

MARIE CURIE

- •P Receiver Functions (Vinnik, 1977)
- •S Receiver Functions(Farra and Vinnik, 2000)
- •Joint inversion of PRFs and SRFs (e.g. Kiselev et al., 2008)
- •SKS Splitting (e.g.Vinnik et al., 1989)
- Joint inversion of PRFs and SKS (e.g. Vinnik et al., 2002)

Density (g/cm3) and Velocities (km/s)

UEST

Data Processing

Results of the Transition Zone

- INGV

- The dependence of P410s on the differential time is a few times weaker than of P660s;
- This correlation means that the thickness of the TZ is controlled by topography on the
- 660-km;

•

This is in line with what is seen on the global scale.

Differential time between P660s-P410s. The time residual relative to the standard time of 24 s is shown by color code.

INGV

DiscontinutyClapeyron410 kmexothermic> 0660 kmendothermic< 0</td>

• Over the anomalous TZ our analysis reveals a zone of reduced velocity in the upper mantle

We interpret the variable depth of the 660-km discontinuity as an effect of subduction;

INGV

MARIE CURIE

UEST

Residual time of S410p

-20°-18°-16°-14°-12°-10°-8°-6°-4°-2°0°2°4°6°8°10°12°14°16°

Most of the residuals times of S410p, excluding few data points, are negative with the average near 1.5 s. The reasons are:

- high Vp/Vs ratio in the crust and upper mantle (0.05 higher than the normal in a layer 115 km thick)
- depression on the 410-km discontinuity of ~11.5 km

NGV

MARIE CURIE

UEST

Joint inversion P and S receiver functions

 \checkmark All velocity models contain a high velocity mantle lid, which is underlain by a low S velocity layer.

 \checkmark The depth of the boundary between the lid and the LVZ at most stations is 65±5 km

 \checkmark At several stations sampling the upper mantle of the Mediterranean we observe evidence of destruction of the lid, where it is either not observed or its lower boundary is at a depth of ~30 km.

 \checkmark At a few stations (Gibraltar, North Africa) the depth of this boundary is around 100 km.

SKS + SKKS splitting

Splitting SKS/SKKS results shown at the seismic stations used in the present study. The white arrows indicate the local direction of local absolute plate motion from no net rotation model NUVEL-1 [black contour] and HS3-NUVEL-1A [red contour].

Joint inversion of PRFs and SKS waveforms

- The firts results of this analysis indicate that a strong anisotropy (~5%) is localized in a depth range from ~50 km to ~120 km. Most of this range corresponds to the LVZ (asthenosphere).
- The fast direction of anisotropy (90 deg) in the asthenosphere corresponds to present-day or recent mantle flow. In the upper mantle can be interpreted as frozen in the lithosphere;
- The effect of the asthenosphere in the SKS splitting is much larger than the effect of the subcrustal lithisphere;

3rd QUantitative estimation of Earth's seismic sources and STructure - 2012

NGV

MARIE CURIE

UEST

Conclusions

- The compilation of a dataset of nearly 2600 P receiver functions and nearly 2200 S receiver functions allows us to obtain a reliable and stable image of the seismic structure in Iberia and western Mediterranean.
- The joint inversion of PRFs and SKS waveforms, which we only could apply for a restricted number of stations, is a very promising methodology. It offers the possibility of not only constraining the anisotropy with depth but also to discriminate the presence of different anisotropic layers.

Nevertheless, t he knowledge about the structure in this complex region is far from being finished. A better understanding of the seismic anisotropy pattern beneath Iberia and western Mediterranean may provide important keys to understand who has the main role on the structure of the upper mantle: **heterogeneity or anisotropy**. High-resolution surface wave tomography of Italian and Alpine territory using earthquake data

I. Morais, A. Morelli

QUantitative estimation of Earth's seismic sources and STructure

INGV

MARIE CURI

UEST

