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1) Spherically symmetric Earth (1D) 

Long period seismograms by normal mode summation 

distance 

Eigenfrequency 
(complex) 

Source excitation 

2) 3D Earth -  First order perturbation theory 
Step 1: high frequency approximation 
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3) “Path average approximation (PAVA)” 

Great circle average 

Minor arc average 

-­‐> Introduced by Woodhouse and Dziewonski (1984) 
 
-> Equivalent to surface wave PAVA approximation (Mochizuki, 1986; 
 Romanowicz, 1987) 
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Time domain waveform inversion 
in global seismology 

•  Woodhouse and Dziewonski (1984) 

 
•  Normal mode theory 
•  Path AVerage Approximation (PAVA)->  
     1D sensitivity kernels 
•  Later, complement with body wave travel 
 times (ray theory) to  access lower mantle 
     structure 

    



observed 

synthetic 

Full Waveform Tomography of the whole mantle 

- To include body waveforms with the “correct” sensitivity  
Concentrated along the raypath, one needs to include across  
branch coupling (Li and Romanowicz, 1995; Marquering et al., 1996) 
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4) Non-linear asymptotic coupling theory (NACT)-> 2D 
Kernels in the vertical plane (Li and Romanowicz, 1995) 
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observed 

synthetic 

Full Waveform Tomography of the whole mantle 

-  NACT: Surface waves, overtones (T>80s), body waves (T>32 s) 

- Misfit function: Windowing to allow weighing of wavepackets, 
 in order to  equalize amplitudes. 
 
- Several generations of whole mantle shear velocity models, 
- Including radial anisotropy, attenuation 
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Velocity 

-  Long period S, SS, ScS, 
SKS…travel times 

- Surface waves and  
     overtones 
- Normal Mode splitting 
- High frequency Approx. 
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Full Waveform Tomography using 
SEM: 
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Replace mode synthetics by numerical synthetics 
computed using the Spectral Element Method (SEM) 
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Challenges for SEM based global 
waveform tomography 

•  Computation time: 
–  One event  periods > 60s: 4 hours on 32 cores 
–  Need several hundred events, many iterations 

•  The earth’s crust: 
–  Strongly heterogeneous 
–  Thin low velocity layers  slows down the 

computation 
–  Crustal structure is not perfectly known at the 

global scale 
–  Strong non-linearity cycle slips 



Our strategy 
•  Take “modest steps” and in the process learn something 

about the earth 

•  Start at long periods (T> 60s) 

•   Progressively add waveforms as observed and 
predicted phases line up 

•  Compute forward wavefield precisely using C-SEM 

•  Compute inverse Hessian kernels approximately (NACT) 

•  Use “homogenized”, smooth crustal model  appropriate 
for the period range considered 

 



1-Forward modeling step 
Use coupled spectral element 
method of Capdeville et al. (2003) to 
accurately forward model wave 
propagation through the 3D Earth  

Γ1= Normal modes in 1D 
Γ2 = Spectral element method 

2-Inverse  step 

Use approximate Hessian 
calculated in NACT. Much 
faster than adjoint! 

NACT 

I-HYBRID INVERSION APPROACH 

Li and Romanowicz, 1995 

At each iteration: 



II-NACT kernels 
•  Based on asymptotic mode 

coupling theory 

•  updated with each update 
of the model (PAVA term 
includes multiple forward 
scattering) 

•  We use the Hessian 
rather than a gradient 
method 

•  Can account for 
attenuation effects 
accurately 

Adjoint kernels 
•  Computed numerically 

•  single scattering 
approximation 

 
•  Conjugate Gradient 

method 

•  Attenuation approximated 



III-Smooth homogeneized crustal model 

Equivalent smooth anisotropic layer (Backus, 1962) 

Two generations of models: 
 
-  SEMum – 60 km constant Moho 
(Lekic and Romanowicz, 2011) 

-  SEMum2- variable >30 km 

-  In both cases: 
-  Start with Clipped, filtered 

    Crust2.0  
 - Fit global dataset of 

dispersion maps (Ritzwoller et al.,  
2002) using Monte Carlo 

=> SEM time step prolonged 4 times 



1st generation upper mantle model: SEMum 

•  Full waveforms, T> 60 s, 200 events 

•  Replace realistic crust by a homogenized, smooth 
radially anisotropic crustal model 
–  Uniform thickness of 60 km 
–  Made to fit a global surface wave group velocity 

dispersion data set (20-60 s)  
 

•  Radially anisotropic model   
–  Vs (isotropic shear velocity) 
–  ξ = (Vsh/Vsv)2 

•  Upper mantle only: 
–  Lower mantle from existing tomographic model 

SAW24B16 



•  Start with 1D model 

•  As iterations progress: 
–  Progressively add waveforms as model improves  
–  Add 3D radial anisotropy at 3rd iteration 
–  Refine model parametrization 

•  -> 642 to 2562 spherical spline nodes in Vs 
•  -> 162 to 642 nodes for ξ 

–  Recalculate kernels at each iteration (non-linear) 

•  After 10 iterations-> SEMum 



2nd generation model SEMum2 
•  Replace 60 km crust by variable Moho 

homogeneized crust (designed to fit 
same group velocity dataset) 

•  Introduce modified crustal corrections 
to account for strong non-linearity in 
NACT 

•  2 iterations beyond SEMum 
 Additional waveforms get included 

French et al., 2012 



SEMum2: 
204 events 
~ 100,000 
wavepackets 
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Geographic extent of oceanic region OR2 in clustering analysis of 
SEMum with N=6, and the location of major hotspots 

Lekic and Romanowicz, 2011 







Conclusions 
•  SEMum2 shows similar large scale features in 

good agreement with previous global models 
developed using “approximate” theory 

•  Subduction zones better resolved, 
approaching resolution of recent P models 
(e.g. Fukao and Obayashi, 2011) 

•  Continental roots are well marked, max. depth 
200-250 km 

•  SEMum2 exhibits significantly stronger low 
velocity regions: 



Upper mantle low velocity zone 
–  Well developed  and strong LVZ in the oceans 

–  Depth of velocity minimum increases with age 

–  Velocity minimum in agreement with local study at 
EPR (in depth and strength) 

–  Bottom of LVZ well marked in general 

–  Deeper zone of low velocities (~250 km depth) 
forming “streaks” that appear to align with APM in 
Pacific  

–  Between 300 -800 km, columnar low velocity 
features associated with hotspots, but not 
necessarily with single hotspot, and can be offset 
horizontally 



Outlook 
•  Our modeling confirms common wisdom 

that more exact theory can resolve low 
velocity structures better 

•  Only beginning – next steps: 
– Perform source perturbations 
– Shorter periods (40 s) -> 

•  Lower mantle 
•  Higher resolution 

– Upper mantle attenuation (Jamie Barron’s 
poster) 

 


