Imaging the structure of the Tien Shan using receiver functions and seismic ambient noise

Amy Gilligan (Bullard Labs, University of Cambridge) With: Keith Priestley (Bullard Labs, University of Cambridge), Steven Roecker (RPI)

Overview

- The Tien Shan
- Receiver Functions
- Ambient noise cross-correlation
- Joint inversion of ambient noise and receiver function data

The Tien Shan Why are they interesting?

The Tien Shan What are we investigating?

73

- What is the thickness of the lithosphere?
 How does crustal thickness change?
- Use receiver functions to investigate the presence of boundaries with velocity changes
 Use surface-wave observations made using ambient noise to investigate velocity structure
 Use joint inversion to overcome the limitations of the two data sets

Vinnik et al., 2006

The Data

 40 broadband stations deployed as part of the **MANAS** project Operational between July 2005 and July 2007 Cuts across the Kyrgyz Tien Shan through areas of interest

Receiver functions A brief introduction

Receiver functions Results

Receiver functions Results

S receiver function

Ambient noise cross-correlation A Brief introduction

Advantages

- Obtain measurements for new paths
- Can make short period measurements
- Improved resolution

Stehly et al. 2006

Ambient noise cross-correlation Cross-correlograms

Ambient noise cross-correlation Calculating rayleigh-wave group velocities

Plot from mft96 Herrmann program showing group velocity vs period for CHIC-KKTM

Ambient noise cross-correlation Checking results against earthquake data

CHICKKTM

BESHKKTM

30

30

CHICKKTM CHICHHZ

20

20

Joint inversion of receiver functions and seismic ambient noise

Limitations of Receiver Functions

- Receiver functions are sensitive to shear velocity contrasts and vertical travel times
- They are non unique velocitydepth trade off.

Joint inversion offers tighter constraints on the shear velocity structure and limits the likelihood that will over interpret a feature seen in one set of data.

Limitations of Surface Waves

• Fundamental mode surface waves are sensitive to absolute vertical velocity averages, not velocity contrasts.

Results from a joint inversion

Summary

- Both receiver functions and seismic ambient noise can be used to image the crust and upper mantle
- Joint inversion of these two data sets is useful as it overcomes the limitations of each one individually
- With receiver function data from the MANAS array we can potentially see variation in the depth of the Moho and a mid-lithospheric discontinuity
- Group velocities can be obtained from seismic ambient noise crosscorrelograms and inverted for crustal structure.
- There is similarity between group velocities obtained from earthquake and ambient noise data
- It is possible to perform joint inversions of ambient seismic noise and receiver function data.

Thank you

