
LAUREL & HARDY: THE HAT FACTS (Part 1) By Tyler St. Mark 

afterward.  Stan even took to keeping spare derbies on hand as he didn’t have the heart to refuse 
anyone brazen enough to ask for one as a keepsake.                                                                                   
 
     Although he wore a traditional derby in their initial films, Stan soon adopted a flat-brimmed 
derby (1 to 1.5 inches) with a high crown (4.5 to 5 inches).  Some devotees have described it as 
an Irish or school boy derby; others refer to it as an equestrian or riding derby.  Some aficionados 
insist that Stan chose this style to look more impish and childlike, lending additional innocence 
to his character.  Others maintain the riding derby was associated with the “rich and snooty” 
back then and this, along with his standup collar and batwing bowtie, gave his bohemian 
character a kind of half-assed dignity.   My recollection regarding Stan’s reason in choosing this 
style is simple; he thought the short brim and higher crown made him look thinner and funnier.  
 
     In any case, whenever derbies with a “stingy“ brim could not be found for Stan, the studio 
hatter would simply cut the brim down by another half inch or so and replace the grosgrain edge 
trim. If in a hurry, the trim was glued rather than sewn and, if you look closely in several film 
stills where Stan’s derby has been 
drenched, the brim edge-trim appears to 
have come loose in places. 
 
     Eventually, the studio hired a local 
hatter who made custom hat molds for 
The Boys so that their derbies would look 
consistent from film to film.  Of course, 
Stan’s derby was often customized for 
films like The Bohemian Girl.  I was told 
that the eight inch crown was achieved 
simply (and cheaply) by cutting the brim 
off one of Stan’s derbies and stacking it 
on top of another, then hiding the seam 
with an extra wide cloth hat band.                                                                 
                                                                                                 Stan & Ollie might go through a dozen derbies in a month of filming                                
 
     Although Stan always wore a firm or “stiffed felt” derby in his Roach films, when Laurel & 
Hardy worked for 20th Century Fox and MGM, he was remanded to wearing a soft felt derby—
again for budgetary reasons.  Sammy (Benson) told my Pop that one of the many outrages 
suffered by Stan while at Fox was the studio’s insistence upon exercising total authority over 
their wardrobe and makeup.  When Stan balked, the studio issued an ultimatum; either Laurel & 
Hardy wore what they were told or they would pay for their own wardrobe!  Stan, who always 
had creative control over their films at Roach Studios, never forgot or forgave Fox for this and 
other grave offenses.  Forever afterward, he bitterly referred to them as “those Fox people.”                                  
 
     As a result of this clash over costuming, Sammy had to deftly maneuver between what Fox 
execs demanded and what Stan insisted their characters would wear.  Not surprisingly, Stan’s 
wardrobe in these final films looks a bit awkward; his character seems almost uncomfortable 
wearing the winter-weight tweed double-breasted suits that Fox insisted upon.  In many film 
stills and publicity photos, his wardrobe appears somewhat stiff and ill-fitting.  Stan may not 
have been amused with his wardrobe at Fox but he did, in his own way, have the last laugh! 
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Seeing through the donut holes
a conversation between a young and an elderly seismologist

(Karin Sigloch & Guust Nolet)
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Monday, 21 May 2012

G: Hi Karen, long time no see, remember me?
K: I think so, but that was ages ago. Have you retired?
G: Almost, though I still look at seismograms. I don’t keep up with this new stuff, though. 
What’s all that hoopla about donut holes?

http://www.laurel-and-hardy.com/archive/articles/2010-08-hatfacts.pdf
http://www.laurel-and-hardy.com/archive/articles/2010-08-hatfacts.pdf


 onset time

Monday, 21 May 2012

K: I guess you’re still picking onset times? That is so out of fashion.... ever since we have 
digital seismograms.
G: Mmm, yes. But what’s wrong with it? I now pick onsets with SAC on a screen, so it is 
actually very easy.



Monday, 21 May 2012

K: Yes, as long as there is no noise, and you can actually see the very first arrival. But even 
then, what have you got? Just one piece of information. You forget that there may be 
thousands of samples in your SAC file. What do you do with them? Throw them away? What a 
waste! 1024 or more samples and only one bit of information....



cross-correlation

Cuv(t) =

�
u(τ)v(τ − t) dτ

Monday, 21 May 2012

G: No, no. I can pick later arrivals. Especially with cross-correlation that has become quite 
easy, even in the presence of noise. It gives you a very accurate time measurement.
K: Yes - in fact I do that myself. But that implies that you cannot use ray theory!



Cross-
correlation

Seismograms

Monday, 21 May 2012

G: I’ll show you! Here I have a blue fast pulse and a red one that has been delayed by 3 
seconds. The onset times thus differ by 3 seconds...I know because I synthesized them 
myself. And when I take the cross-correlation with the blue one I get precisely 3 seconds for 
the red one. Since I measure the same delay, I can evidently use the same theory.
K: But how did you compute them?  
G: I low-passed a blue pulse, then shifted it 3 seconds to get the red one. You don’t have to 
be a rocket scientist to do that.
K: So there was no physics in your calculation, just math?
G: What do you mean?



The trouble with onsets

• all frequencies arrive at same time (zero phase)
• no frequencies have been attenuated away
• (and we are not even talking about instrument 
response...)

Monday, 21 May 2012

K: well, let us first see what physics we need to get a sharp onset, because ray theory assumes you can actually 
detect the minimum arrival time. Remember that you can derive the eikonal equation by minimizing the travel 
time?
G: of course - I taught you so!
K: well (click) you want all frequencies present in the onset - so they must all be zero phase (click) and should not 
have attenuated (click) and I am not even talking about the instrument....



Cross-
correlation
(with blue)

Seismograms

Monday, 21 May 2012

G: my point is that I can still measure the 3 seconds delay even if the onset is not so sharp, 
by using cross-correlation: 
K: but some heterogeneity must be causing your delay, and cause an effect that is not as 
predicted by ray theory! Let us look at some very simple cases.



Case I: a big wall

Monday, 21 May 2012

K: Take the case of a plane wave hitting a big wall. There is no way the wave can go around it. 
There is no diffraction of any kind, just a slowdown for the wave, no matter what path it takes 
to go to the seismometer, it has to go through the wall.
G: Mmm, yes. I can see that. You mean to say that, if I apply Huygen’s law and place little 
imaginary sources on the wavefront when it comes out of the wall, all these sources are 
delayed by the wall.



Case I: a big wall

Huygen’s
sources

Monday, 21 May 2012

K: Yes, these Huygen’s sources would haven been closer to the seismometer if it was not for 
the wall. But the seismometer does not see a difference apart from that delay.
G: Actually, in the paper by Dahlen et al they prove that a cross-correlation time
predicted with this banana donut stuff converges to the ray theoretical solution for the delay 
time.
K: precisely - the waveform stays the same, the delay measured by cross-correlation is the 
one predicted by ray theory. But now look what happens if the wall does not extend to 
infinity.



Case II: a tiny wall

Huygen’s
sources

multi
pathing

Monday, 21 May 2012

K: At this point some of the Huygen’s sources continue at their usual speed. They also create 
wave energy in the seismometer location. The detour they make is small, certainly if the 
instrument is far away, so they are practically not delayed.
G: but then you have a mix of waves that arrives in the seismometer. We have multipathing....
K: Yes. In this case the diffracted wave and the direct wave add up to the signal you see.



Monday, 21 May 2012

K: Here is a little movie to show the same thing. First a big wall. Notice how the wavefront 
remains flat.
G: But even here I see some multipathing, there are waves coming in at later time, apparently 
from the sides of the wall!
K: Yes, that is important if we filter: for low frequencies the window will be large enough so 
that these arrivals also influence the cross-correlation delay.



Monday, 21 May 2012

K: But if the box at the bottom is small wall it only
slows the wavefront down locally. Right after passage, one can see the delay. But as the wave 
progresses, the delay disappears.
G: I can see the diffracted wave filling in the delay! Can you do the movie again and stop just 
before it hits the other side?
K: sure (stop movie just before the end)
G: It looks as if the effects are much more dramatic near the side than at the center?
K: Yes - that is an effect of the donut hole: cross-correlation delays are minimal along the 
raypath, and larger as one moves away from it. But let us look at this from a waveform point 
of view.



Multipathing around small wall

0.9 s

delayed by wall

diffracted
around wall

Monday, 21 May 2012

K: here we take the case that the diffracted wave (the blue one) has a much smaller amplitude 
than the direct wave - the red one. The red wave is delayed by 9/10 of a second.
G: you show them separately, but on the seismogram they are added, isn’t it?



X-correlation with different waveshapes

Observed =
delayed + diffracted

Predicted
if no wall

Monday, 21 May 2012

K: Yes. Here you see at the top the actual signal that we observe and that has the diffracted 
as well as the direct wave in it. At the bottom is a synthetic seismogram predicted for an 
Earth with no wall to delay the wave.
Now, I drew a line through the onsets. These are the same if we may assume that the wall is 
small enough with respect to the ray length so that the diffracted wave is not noticeably 
delayed.
G: Mmm. I see. But the maxima don’t come in at the same time. And the waveshape is 
different.... But that means I cannot do a cross-correlation!



X-correlation with different waveshapes 
(2)

Monday, 21 May 2012

K: Well your SAC program is not going to forbid you to cross-correlate two signals...
So let’s do that. Do you remember the delay of the direct wave?
G: My memory is getting weaker, but numbers I still recall! 9/10 of a second was the delay 
that the wall gave the direct wave.



Cross-correlation
0.74s

(instead of 0.90s)

Monday, 21 May 2012

K: Yes. And the cross-correlation gives a delay of only 0.74, so we lost about 20% of the 
delay in this measurement. This loss of signal is called wavefront healing. 
G: Shoot - that means the cross-correlation makes big errors and is useless... 
K: Not necessarily. You were only expecting 0.9 because ray theory told you so. What if you 
move on to some better theory?
G: Isn’t ray theory the best there is for a body wave?



Perturbing the
x-correlation

δTx-cor = −
�
u̇(t)δu(t)dt�
ü(t)u(t)dt

u(t)δu(t)

Monday, 21 May 2012

K: No, it does not predict the change in wave shape. Suppose we have an unperturbed 
wavefield u(t) [click] and we add to this a small perturbation delta u(t) [click]. We can then find 
out how the cross-correlation delay changes to first order [click].
G: Mmm... interesting... So it is linear with delta u. Of course you cannot go too far with this, 
the linearity must break down at some point.
K: Yes of course; but the early numerical experiments by Shu Huei Hung showed that for a 
small spherical anomaly one could easily go to 6% anomalies and higher. Recently Diego 
Mercerat looked at a 3D checkerboard.



Borehole-to-borehole test

The real
model is

3D

±2%

Monday, 21 May 2012

K: this 3D checkerboard has +/- 2% variations in velocity. Some rays  - like the one I show 
here - see only fast fields, others only slow, most see a mix. Diego, however, computed 
seismograms, not times. He got the times by cross-correlating with synthetics in a 
homogeneous model.
G: So you would expect travel times to be between +/- 2% if ray theory is valid. What about 
reverberations between all those anomalies?
K: To see how they influence the linearity of cross-correlation delays is part of the test. Let us 
look at the seismogram along this fast raypath.



Homogeneous model

2% checkerboard model

Monday, 21 May 2012

K: The waveforms can actually be very complicated. You don’t really see an earlier onset, and 
the first maximum in the checkerboard is late, not fast.
G: I bet you that means Diego has a bug in his code!
K: How much do you want to bet?
G: Last time I placed a bet with a young seismologist I lost a bottle of champagne, so I am 
getting a little more careful. But surely, you cannot cross-correlate the bottom and the top 
seismogram? They don’t look in the least alike... That would be as hopeless as trying to do a 
full waveform inversion!



fast ray, but
positive delay?

ray theory
prediction

Monday, 21 May 2012

K: Well my correlation code does not say “no” if I tell it to correlate, so I can always do it. Here 
is the result.
G: Ha! But you can see it makes no sense,... the ray crossed fast fields only, and you measure 
a positive delay, so your cross-correlation thinks it has slowed down! 
K: So what?
G: [acts dumbfounded]. Well the cross-correlation is obviously wrong, I told you so.



Homogeneous

2% checkerboard

Monday, 21 May 2012

K: Not necessarily - the point is you think in terms of ray theory. But you cannot see the fast 
onset predicted by ray theory, so ray theory is useless.
G: Mmm. I have to agree with that. But I’d still say we face a problem if neither ray theory nor 
cross-correlation agrees with my intuition.
K: Well, let us go back to Huygens



Monday, 21 May 2012

K: so think again of secondary sources on the wavefront. Huygen’s Principle says that these 
all contribute to the signal and sample a lot of the slow boxes.
G: Yes - the modern version is the Kirchhoff integral, and you’ll find that these sources are 
only interfering constructively for paths near the ray, which is why ray theory works so well.
K: precisely; NEAR the ray - not ON the ray. The only path that senses no negative anomalies 
is the one path that crosses all the corners exactly. It has so little energy to contribute to the 
integral, that you cannot see its onset by eye - not even when there is no noise. The others 
sample both negative and positive anomalies, the net effect is small.
G: small, but the wrong sign:  not a speed-up as I would have expected.



δTx-cor = −
�
u̇(t)δu(t)dt�
ü(t)u(t)dt

∆u(t)

Scattered waves
Monday, 21 May 2012

K: The sign is actually very difficult to predict. Remember this equation for the cross-
correlation delay?
G: Yes, it has the perturbed field delta u(t) in there, together with the unperturbed field.
K: Correct. In our case the unperturbed field is if there is no checkerboard. The 2% anomalies 
give rise to a scattered field ‘delta u(t)’. They act as real sources, you can see the scattered 
waves by eye. 
G: You mean there is a lot of multipathing, different waves arriving in the same time window?
K: Yes.



Fit every sample?

predictedobserved

dT

predictedobserved

dT

traveltime from 
cross-correlation

traveltime from 
onset pick

Monday, 21 May 2012

G: OK, but in the beginning you lectured me for using only one bit out
of 1024.  Really you are doing the same with your cross-correlation times.
You have just replaced ray theory by more realistic modeling that
includes scattering. But you are still using only one observation.



Fit every sample?
dT

predictedobserved

traveltime from 
cross-correlation

Monday, 21 May 2012

K: Not quite. We measure and model in different frequency bands. In these 
measurements of real P-waveforms there are 8 frequency bands.



Fit every sample?

Multiple constraints from every wave 
path

Monday, 21 May 2012

K: The idea is that every wavelength "sees" the earth in a different way and thus gives 
a complementary piece of information. Each measurement is associated with a 
different sensitivity, and we force the solution to satisfy ALL of these independent 
constraints.
G: OK, the seismogram of length 1024 is condensed into eight scalars instead of 
one. But that still leaves 1016 degrees of freedom unused. Didn't waveform inversion 
promise to use all samples?
K: Yes but we get the most important information, the rest becomes more and more 
redundant.



frequency dependence of the 
sensitivity

7.2 s

2.8 s

31.5 s

Monday, 21 May 2012

K: Here is how it works on large scale in the earth, where one can easily measure bandpassed 
signals with periods from 2-30 seconds, each with their own delay.
G: So, we cannot just speak of one ‘arrival time’?
K: Only in the limit of zero period, if you wish. But it is better to acknowledge that the cross-
correlation delay is a different beast, for which we have to use a theory different from ray 
theory.



Homogeneous

2% checkerboard

Monday, 21 May 2012

G: How is this dispersion going to help us?
K: Well, if you band-pass the signals at some low frequency, you are going to include the 
contribution of all the wiggles that arrive at later times. Those are the scattered waves that 
constitute delta u.
It works very well:



2% checkerboard, 6 frequency bands

Monday, 21 May 2012

K: here is a solution of cross-correlation times that were actually measured from the 
synthetic seismograms. You can see the fields in the top half have very much the correct 
shape and amplitude. The little circles give the true anomaly amplitudes.
G: But could one not get the same result with ray theory?
K: You would have to measure onset times, and as we have seen, these are usually invisible. 
And if you use cross-correlation delays, ray theory is not the correct theory to interpret them.



The Devil’s Checkerboard
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Monday, 21 May 2012

K: Diego repeated  an experiment that Bo Jacobsen and I did some time ago, but this time 
with his treasure of synthetic seismograms in the 3D checkerboard and actual observed delay 
times. He took the measured delays in the 2 ms band and inverted them with ray theory. In 
the image on the right you can clearly see that this can lead to complete colour reversal in 
many regions of the checkerboard - depending on the distance from the sources and 
receivers in the boreholes and at the surface.
G:  Wow. When I saw that the cross-correlation delay for that fast raypath was positive I 
concluded that cross-correlation does not work. But that positive delay gives the right 
checkerboard on the left! So finite-frequency theory is *really* different from ray theory!
K: I’d rather say that ray theory is simply wrong in this case.



Source s

u

u’
u"

Receiver r

dV

adjoint computation of δu

δTx-cor = −
�
u̇(t)δu(t)dt�
ü(t)u(t)dt

Monday, 21 May 2012

G: OK, I am beginning to understand. But I guess this is all a bit too late, isn’t it. Everyone 
tells me the banana-doughnut kernels have been taken over by adjoint kernels?
K: That is actually a very confusing terminology. What others call adjoint, we call reciprocity 
in ray theory. It is just a way of avoiding that one has to compute the wavefield from many 
Huygens sources. [click] you compute delta u from the receiver, and with reciprocity you can 
interpret this as the field from many different sources in the receiver.
G: So why all the broohaha?
K: because if you go beyond ray theory and you compute the complete wavefield, with 
reverberations and diffractions and the like, you have to do a second finite difference or 
spectral element computation, which is not trivial. With ray theory to compute the kernels, it 
is trivial.



Matrix solver or gradient search?

Am = d

m = (ATA)−1AT δu ≈ αAT δu
Am = δu

(Delay time data)

(Waveform data)

Monday, 21 May 2012

G: Is that all?
K: Well, the adjoint method comes from full waveform inversion, in which the data are not 
delays, but the seismograms themselves. The vector d - and thus the matrix - is in that case 
huge. The matrix cannot be stored in memory and you are forced to search in a gradient 
direction. A simple representation of the difference is shown here, though it is a bit more 
complicated in practice. Once you have a linearized relationship with the seismogram 
perturbation, you take the adjoint (or the matrix transpose) to find an improvement to the 
model.
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Fig. 7.11. Two examples of kernels KP(rx) for long-period (20 s) teleseismic P-waves in
the Earth’s mantle. The kernel in the Northern hemisphere is for a surface reflected PP-
wave at ∆ = 120◦, the shorter kernel in the Southern hemisphere for a P-wave at 60◦.
Darker greyscale indicate more negative values of the kernel, the whitish regions have a
positive value for the kernel, implying a positive delay for a positive velocity perturbation.
Such ‘reverse’ sensitivities are located in the second Fresnel zone. Note the region of re-
duced sensitivity at the centre of the kernels, except near the reflection point of PP. The
extra complexity of the PP kernel is caused by a 90◦ phase shift at the caustic, as well as
by the fact that scattered waves may also reflect from the surface. The dark shading of the
Earth’s core does not indicate a sensitivity.

We abbreviate the normalized scattering normalized coefficients into ‘interaction
coefficients’ ΩP, ΩS and Ωρ (see Table 7.1 and Figure 7.10):

ΩP,S,ρ = −1
2
p̂2 · SP,S,ρp̂1. (7.26)

These coefficients are normalized to 1 for forward scattering (γ̂1 = γ̂2) of uncon-
verted waves. Putting this all together in (7.9), we find for the travel time perturba-
tion:

δT =
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�
δVP

VP

�
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�
δVS

VS

�
+ Kρ

�
δρ

ρ

��
d3rx, (7.27)

where δVP/VP etc. are evaluated at rx, and the Fréchet kernel for body wave delay
times is:

KX(rx) = − 1
2π

�

rays1
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N(rx)ΩX

�
1

V1V2

� 1
2
�

Rrs

VrRxrRxs
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×
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0 ω3|ṁ(ω)|2 sin[ω∆T (rx)−∆Φ(rx)]dω�∞

0 ω2|ṁ(ω)|2dω
, (7.28)
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120 Travel times: interpretation

unperturbed seismogram u(t) is given by:

γ(t) =
�

u(t�)u(t� − t)dt� . (7.3)

We define the travel time delay by the maximum of the observed cross-correlation

function, i.e. of the correlation of the observed signal u + δu with the unperturbed

wave u:

γobs(t) + δγ(t) =
�

[u(t�) + δu(t�)]u(t� − t)dt� . (7.4)

For the unperturbed wave, the cross-correlation reaches its maximum at zero lag,

so:

γ̇(0) = 0 , (7.5)

and for the perturbed wave the maximum is reached after a delay δT :

γ̇obs(δT ) = γ̇(δT ) + δγ̇(δT ) = 0 , (7.6)

where the dot denotes time differentiation. Developing γ̇ to first order, we find,

following Luo and Schuster [190] or Marquering et al. [195]:

γ̇(δT ) + δγ̇(δT ) = γ̇(0) + γ̈(0)δT + δγ̇(0) +O(δ2) = 0 , (7.7)

and using (7.4) and (7.5):

δT = −δγ̇(0)
γ̈(0)

= −
�∞
−∞ u̇(t�)δu(t�)dt�
�∞
−∞ ü(t�)u(t�)dt�

. (7.8)

It is more convenient to express (7.8) in the frequency domain. Using u̇(ω) =
−iωu(ω) from (2.67), Parseval’s theorem (2.68):

� ∞

−∞
g1(t)g2(t)dt =

� ∞

−∞
g1(ω)∗g2(ω)dω ,

and the spectral property of real signals u(−ω) = u(ω)∗, where an asterisk denotes

the complex conjugate:

δT = −
�∞
−∞[−iωu(ω)]∗δu(ω)dω

�∞
−∞[(−iω)2u(ω)]∗u(ω)dω

=
�∞
0 iω{[u(ω)∗δu(ω)]− [u(ω)∗δu(ω)]∗}dω�∞
0 ω2{[u(ω)∗u(ω)] + [u(ω)∗u(ω)]∗}dω

= −
Re

�∞
0 iωu(ω)∗δu(ω)dω�∞

0 ω2u(ω)∗u(ω)dω
. (7.9)

Picking the maximum of γobs(t), as in (7.6) is usually accurate – in Section 6.2

we saw that it is the optimal filter judged by the signal-to-noise ratio. However, in

｛

What about linearity of the kernels?

Monday, 21 May 2012

G: But I have been told adjoint inversions are linear and banana-donut inversions cannot be 
nonlinear?
K: That is mostly hype. Both are linearized. Just as one can re-compute wavefields in a 
second or third iteration of an adjoint inversion, you can recompute rays. All it takes is a 3D 
ray-tracer. The adjoint method will eventually include second order scattering into account, 
but the question is if that is important.



Monday, 21 May 2012

K: To check on how linear this is, Diego redid the checkerboard test with 5% anomalies. 
G: I guess the seismograms on the right are for the stronger anomalies? They look more 
complex.
K: Correct. First of all, if the linearized expression for the cross-correlation is correct, we 
expect the delay times to have a ratio of 2 to 5.



Linearity of ΔT
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Monday, 21 May 2012

K: When we compare the cross-correlation delays of the checkerboard with 5% anomalies 
with those for the 2% case, we see that they are scattered because of errors in picking the 
maximum, but they are in the ratio of 2:5. So at least for anomalies of up to 5% we remain in 
the linear domain.
G: But hold it - why are there so much fewer data at bandpassed records than in the full 
frequency band at the left? 
K: Can’t you guess?
G: [silent to let audience think]
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Monday, 21 May 2012

K: actually, at the higher frequencies, the spread of anomalies is much larger.
G: Ah, I get it! The low frequencies are more concentrated towards zero...The low frequencies 
suffer more from the wavefront healing. Instead of going along a red or blue diagonal line 
they pick up the other colours of the neighbouring checker cubes...
K: Yes. That was actually causing the disastrous effects in the devil’s checkerboard..



linearity:  dT=Am

delay 1 s delay 5 s

Monday, 21 May 2012

K: we have thus a practical proof that cross-correlation delays scale linearly with the model. 
Actually, that is what one would expect if ray theory is valid: a wide wall that is five times 
thicker will give a delay that is 5 times larger. We now know that it is also valid if ray theory is 
not OK, at least up to 5% - which is enough for the mantle of the Earth.
G: and the theoretical relationship is also linear! The banana-donut kernels would give a five 
times larger delay on the right.
K: precisely. That means that BD-kernels can handle large delays, even if they are larger than 
a quarter period of the wave.



full waveform inversion?
linearity of du

u(t) + δu(t) = eiω(t+δT ) ≈ u(t) + iu(t) · ωδT

δT linear 
with model

+.....

Monday, 21 May 2012

K: But the same is not true for waveforms! Even though the delay delta T depends quite 
linearly on the model, the linearization of harmonic functions is quite troublesome.



Keep fitting phases / traveltimes?

traveltime kernel for triplicated P-
wave à la Nissen-Meyer (spectral 
element method)
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Monday, 21 May 2012

K: Travel times, which are essentially phase shifts in the passbands, are more linear 
and should thus be more stable. Especially given the levels of random and 
systematic noise in real data. We can ask the audience who actually has experience 
waveform inversion. I get the sense that in the "adjoint" approach as well, the 
emphasis today is generally on fitting the phase first and foremost.



Also fit wave amplitudes?

dA

Monday, 21 May 2012

G: We have talked about delays. You have tried to fit amplitudes though?
K: Yes, I tried to fit amplitude anomalies, as a second robust characteristic of the 
seismogram, besides traveltimes. Amplitudes have very different measurement 
sensitivities from traveltimes.
G: The motivation was to estimate attenuation?



Also fit wave amplitudes?

P-wave amplitude anomalies 
observed for an earthquake from 
Peru.

Monday, 21 May 2012

K: Yes, but only after correcting for elastic effects (focusing). Most of the observed 
signal here is due to focusing, we found.



Also fit wave amplitudes?

Attenuation structure from inversion of S-
wave amplitude anomalies for dlnQs and 
dlnVs jointly. 

Tian et al., 2009

Monday, 21 May 2012

K: Getting at Q sort of worked for S-waves, underneath the dense USArray. But for P-
waves, the anelastic signal drowned in the measurement noise, despite accounting 
for focusing.



Do we need waveform 
inversion when there is lots of 

NOISE?

Monday, 21 May 2012

G: Welcome to the real world. So far we talked about theory, synthetics tests, and 
favorable geometries. But data are noisy. And we never have enough data. How 
useful are those sophisticated waveform inversions, when data quality and coverage 
are poor?
K: That's a whole new lecture. I don't think this question has seen much effort at 
quantitative answers. NOISE, we can think about that for next year. You won't have 
retired, will you?
G: No, not before I release my MERMAIDS to the ocean.



Waveform inversion and noise?

MERMAIDS – traveltime 
pickers,  under the 
sea…

Monday, 21 May 2012

K: What do they do?
G: They float in the oceans at around 1000 m depth. When they detect an 
earthquake, they come to the surface and send a short piece of seismogram via 
satellite.  Even if we can only see the onset we’ll have completely new information. 
So far, we have almost no data from the oceans.
K: Does that mean back to ray theoretical inversion again?  



45

Fox Islands, M=7.4, ∆=85

Monday, 21 May 2012

G: In some cases - when all we can see is the onset, yes. But for stronger signals like 
this Fox Island quake of magnitude 7.4, we can not only pick the onset but also 
cross-correlate P waves across a network of Mermaids, waveforms are in this case 
sufficiently similar. In october we shall launch half a dozen Mermaids near La 
Reunion, in your Rhum-Rum experiment!



Waveform inversion and noise?

Ocean bottom seismograms: 
noisy only in some bands –      
OK for waveform methods!
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Monday, 21 May 2012

K: On that cruise, we will also deploy ocean bottom seismometers. They also have a 
reputation for being noisy. The reality is more mixed. Some frequency bands are so 
noisy as to be useless. Others have a very good signal quality. It´s a non-broadband 
situation where it is impossible to pick an onset. But for finite-frequency methods, 
that does not pose a problem. On the contrary, such data can be accommodated 
naturally.



Conclusions I

• Noisy data often require correlation

• Cross-correlation delays require finite-
frequency theory

Monday, 21 May 2012

G: So if I have understood you correctly, you agree that x-correlations are more precise,
K: Yes, but if you do that you must use finite frequency theory or you’re in trouble
G: Like with the checkerboard inversion, I got it...



Conclusions II

• With respect to waveform inversion:

• They remain linear for earth-like anomalies

• They reduce the matrix size, gradient search 
can often be avoided

• For body wave signals: ray theory offers 2-3 
orders of magnitude speed-up in computation

Monday, 21 May 2012

G: The fact that they remain linear even for complicated anomalies of several percent, was 
that well-known?
K: Not exactly - there was a discussion whether the linearity of BD-kernels was warranted, 
often linked to the linearity of the Born approximation. But that is the wrong way to look at it: 
the kernels are by definition linear and the checkerboard tests clearly show that the delay 
times follow suit. Since they agree for small anomalies they do too for the large ones.
G: So one does not really need to use full waveforms?
K: Once you’ve split the time series in windows with their frequency-dependent delays, there 
is little extra value in milking the seismogram even further. I’d rather use more different 
source-station pairs. If the windows contain bod waves, ray theory will also speed up the 
matrix computation but the windows can in principle contain anything.
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Keep fitting phases / traveltimes?
dT

traveltime from 
cross-correlation

L2 norm 
misfit à la 
Tarantola

Monday, 21 May 2012

K: Sort of. In its original version proposed by Tarantola, the misfit criterion was the 
L2 norm of seismogram-minus-synthetic. So you explicitly weigh all samples evenly. 
But in the cross-correlation measure all samples influence the observed delay as 
well, we just do not overdo it.



Keep fitting phases / traveltimes?

traveltime kernel for P-wave à la 
Dahlen and Nolet (from paraxial ray 
tracing)

Monday, 21 May 2012

G: That brings us back to our earlier discussion on linearity. You are saying you don't 
want the raw L2 misfit because it is not linear.
K: Well, with the original finite frequency modeling a la Dahlen and Nolet, it would 
not have been possible to compute kernels for the raw L2 waveform misfit. You 
know that, of course.
G: Yes, that limitation was due to the efficient approximation in which the kernels 
were computed from paraxial ray tracing. But you are now synthesizing kernels from 
full forward wave propagation a la Nissen-Meyer. And you still don't use the raw L2 
norm?
 



∆u(t)

δTx-cor = −
�
u̇(t)δu(t)dt�
ü(t)u(t)dt

Monday, 21 May 2012

K: Yes. But now look at the contribution from a scatterer on the direct ray path. This will 
arrive at the same time as the direct wave. It can add to its amplitude, but it will not perturb 
its phase. And the result is that it does not affect the cross-correlation time.
G: You mean an anomaly on the raypath only affects the amplitude, but does not delay the 
wave? But what about that one ray that goes through all the corners?
K: Zero, nothing. It drowns in the contribution of neighbouring paths.
G: Unless the frequency is infinite...
K: When is the last time you’ve seen a seismic wave with infinite frequency?


