Numerical implementation of a perfect transparent elastic mirror for the reconstruction of direct and time reversed wavefields

Yder Masson¹, Barbara Romanowicz^{1,2}

¹ Institut de Physique du Globe de Paris

² Berkeley Seismological Laboratory

1 : Initial value

2 : elastic mirror

3 : sources (forward) / sink (backward)

Traveling waves...

Sink

Initial Value

Backward

! Initial value might need to be reseted periodically when attenuation is present !

"Rigid" elastic mirror

ço o a eço o a eço do o a odo 40 0 0 040 0 0 040 0 0 040 0 0 040 0 0 040 0 0 04 φο ο ο οφο ο ο οφ Φ<u>ο ο ο οφο ο ο οφο ο ο ο</u> Φο ο ο οφο ο ο οφο ο ο ο ο ο ο ο οφο ο ο ο(ο ο ο οφ do o o o<mark>l</mark>o o o odo o o odo o o odo o o o<mark>l</mark>o o o od Φό ὄ ὄ ὄφο ο ο οφο 40 0 0 040 0 0 040 0 0 040 0 0 040 0 0 040 0 0 04 φο ο ο οφο ο ο οφ 00 c o coo c o coo 00 c o coo φο ο ο οφο ο ο οφ

A) Record displacement at all grid nodes on the mirror

B) Force the displacement to match the recorded values

Direct

Time Reversed

Summary for the rigid mirror :

- Perfect accuracy
- Mirror must match the elements border
- Mirror is not transparent
- We need to store

$$N = 3Sh^2$$

Transparent mirror using a set of point sources

\$ŏ.	ö	ð	ŏġċ	5 č	ð	ŏφ	ŏ	8 3	ŏ.	ŏbŏ	ö	ð	ŏ	ŏ	ö	ŏ	ŏøŏ	ŏ	ŏ	ŏŏ
90	¢	o	000	0 0	0	οφ	0	0	0	000	¢	0	00	0	¢	0	000	0	0	00
b O	0	ò	000	0 0	0	00	0	0	٥	040	0	0	00	00	0	0	000	0	0	00
0	0	0	000	0 0	0	ο¢	0	e -	\wedge	0.5		0	00	20	0	0	000	0	0	o 🖗
3 8	8	8	846	3 8	, e	8	8	57.	o,	888		8	8	10	8	8	888	8	8	- 66
90	0	0	000	0.0	0	ာစ္	0		0	opo	¢		00	2	0	0	000	0	0	ο¢
ò	ò	Ó	000	0 0	0	06		0	ô	οφο	ò	0	Ó	6	٥	٥	000	Ó	٥	oφ
2Q	8	0	299	2 2	2	Q.	2	2	2	000	8	0	00	20	b .	2	200	8	Q	20
٥ŏ	ŏ	ð	ŏĞċ	δŏ	ŏ	ŏğ	ŏ	8	ŏ	öğö	ŏ	ð	ŏč	ŏ	ŏ	ŏ	ŏφŏ	ŏ	ŏ	ŏŏ
þQ	¢	0	000	0	0	00		0	0	000	¢	0	00	0	0	0	~ 00	0	0	οφ
ф0.	ô	Ô	040	0	ò	٥ģ	Ô,	0	Ô,	οφο	Ô	Ô	Ô¢	òò	Ô	Ô	0/0	ô	Ô	oφ
88	8	8	200	8	2	- 28	8	8		888	ĝ,	8	8	20	8	8	848	8	8	88
₫ŏ	ō	ō	õðð	ōŏ	ō	ōφ	ŏ	ō	ō	ōđē	Ž	ō	ŏč	ŏ	Ē	õ	ŏφŏ	ō	ō	öφ
¢0	¢	0	000	0	ò	۰¢	0	0.1	0	000	¢		00	o	¢	Ô	000	¢	0	ο¢
¢0	٥	0	000	0	0	οģ	0	0	٥	oĝo	Ô	0	00	όo	¢	0	000	0	0	٥p
	ŝ	\$	800		ŝ		8		2	888	8	0	8	20	8	\$	240	8	\$	- 66
Φō	ō	ō	õđe) Ö	ō	ōΦ	ō	ō	ō	ōđō	ō	ō	õ¢	ō	ō	ō	ōđō	ō	ō	ōΦ
Þ0	¢	0	000	0	0	ႚ۹	0	0	0	opo	0	0	00	0	0	0	000	0	0	οφ
¢0	Ò	Ó	000	0 0	0	٥¢	Ô I	0	Ô	oĝo	Ó	Ó	Ó	òò	Ô	٥	000	Ó	Ó	٥Ŷ
<u>}</u>	8	\$	000	3	ŝ	- 22	8	<u> </u>	8	888	\$	\$	8	20	\$	\$	848	-8	\$	- 66
Þo	Ō	0	000	0 0) Ő	οφ	0	0 (0	opo	0	0	00	0	0	0	000	0	Ō	οø
PO	¢	0	000	0	0	٥¢	0	0 (0	opo	0	0	00	0	¢	0	000	¢	0	οφ
٥¢	Ô	0	000	0 0	0	٥ģ	Ô I	0	ô	opo	Ô	Ô	Ô	òô	ò	Ô	000	Ô	Ô	٥Ŷ
20	0	8	200		2	28	2		2	200	8	2	20	20	0	0	200	0	0	88

Representation theorem

$$u_{i}(\mathbf{x}) = \int_{V} G_{in}(\mathbf{x}, \mathbf{x}') f_{n}(\mathbf{x}') dV' + \oint_{S} \{G_{in}(\mathbf{x}, \mathbf{x}') n_{j} c_{njkl} \partial'_{k} u_{l}(\mathbf{x}') - u_{n}(\mathbf{x}') n_{j} c_{njkl} \partial'_{k} G_{il}(\mathbf{x}, \mathbf{x}') \} dS'$$

Monopole source

Dipole

source

Direct

Time Reversed

Direct

(Figure form Nissen-Meyer et al 2007)

"Standard method" Express the Dirac delta function in the spectral element basis to get the f coefficients

$$\mathbf{M}_e \ddot{\mathbf{u}} + \mathbf{K}_e \mathbf{u} = \mathbf{f}$$

$$\mathbf{f} = -\mathbf{M} \cdot \nabla \delta(\mathbf{x} - \mathbf{x}_s) S(t)$$

$$u_n = \mathbf{M}_{pq} * \mathbf{G}_{np,q}$$

"Perfect Source" Substitute the displacement with an analytical solution to get the **f** coefficients

Summary for the point source mirror :

- Variable accuracy depending on the number of sources
- Can handle arbitrary geometry (at the expense of adding more sources)
- Mirror is transparent

• We need to store

$$N = 6Sh_s^2$$

Perfect transparent mirror using discrete differences

Forward simulation

	40	φo		φo	φo	фо фо	Å.	ľ	I.		φo	φo		Ĩ.	Ĩ	Ι-		φo	ΨŪ	φo I_
00	0	0	000	0	0	ě	0	~	0		0	0	ĕ	õ	Ň	0		0	v ^	0
0	0	0	000	٥	0	000	0	Ň	0	000	0	0	0 0	~	Ň	0	odo	0	Ŷ	0
	00	ο¢		οφ	οφ	öğ		ž	0	о й	0	0	o o	Ä	Ĭ			00	Ĵ	ΟΦ
	0	0		0	0		0	Ň	0		0	0		0	~ ^	0		0	- 0	0
8	0	0	000	Ô	0	ě	0	×	0	O¢C	٥	0	ě	2	Š.	0	000	0	0	0
00	0	Ò	000	٥	0	000	0	Å	õ	000	٥	0	ě o	~	~	õ	oþa	0	0	0
000	000	000		οφο	000						οφο	oqo			000	000		000	ΟΨΟ	000
0 e	0	0	000	0	0	-e-	0	Å	0	0 do	0	0	ő	~	Ň	P	000	0	0	0
0	0	0	000	0	0	8	0	Å	0	000	٥	0	0	~	Å	-	000	0	0	0
	oo	000		ဝစို	οφ	ö					οφo	οφo	οφ					000	Ψ	000
	0	0 0) ()	0 0	jõ	, 0 , 0				0	0 0						00) 0
0	0	0	000	0	0	00	0	Å	ő		0	0	000	0	~	0	000	0	0	0
000	000	000		oþo	000						οφο	000				000		000	000	000
0	0	0	000	0	0	ě,	0	č	0	οφo	0	0	φò	0	~	0		0	0	0
0	0	0	oфo	0	0	8	0	Å	0	000	0	0	90	~	~	0	0	0	0	0
000	000	000		000	000	- 666 000	000		000		000	000	000	0.0	0,0			000	000	- 1-
0 0	0	0	000	٥	0	Å0	10	Ž	0	000	0	0	ц ф	0	~	0	000	0	v A	0
0	٥	ò	000	٥	0	000	0	~	0	000	٥	0	90	~	~	0	000	0	0	0
-00	Οφ	οφ		oφ	οφ	οφ		οφ			ဝဓ	οφ	00	Ä	0φ		-00	- 00	vφ	οφ

$$\mathbf{M}_e \ddot{\mathbf{u}} + \mathbf{K}_e \mathbf{u} = 0$$

Compute mirror source coefficients by differentiating the windowed wavefield

> w = 0 ouside the mirror w = 1 inside the mirror

 $\mathbf{M}_e(w\ddot{\mathbf{u}}) + \mathbf{K}_e(w\mathbf{u}) = \mathbf{f}_{Mirror}$

Similar to grid injection when used with finite differences (see Robertsson 2000)

Summary for the mirror based on discrete differences :

- Perfect accuracy
- Can handle arbitrary geometry
- Mirror is transparent
- We need to store

$$N = 3\frac{p}{2}Sh^2$$
 General $N = 3Sh^2$ Best

Why transparency matters ...

Local modeling + field extrapolation = synthetic data at receivers

Piecewise inversion ?

- A) Compute green functions from receivers to mirrors in the current model using global simulations
- B) Perform piecewise waveform tomography (Possibly one inversion per core)
- C) Assembly of the updated model
- Iterate...

Conclusion

- We introduced a perfectly transparent elastic mirror allowing to reconstruct the seismic wavefield within a volume enclosed in a surface of arbitrary shape
- Combined with field extrapolation, the mirror can be used to Perform Local waveform tomography using a global dataset
- to be continued...