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Reconstructing  a wave field 
within an enclosed volume

2 : elastic mirror

3 : sources (forward)
/ sink (backward)

1 : Initial value

Traveling waves...
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Initial Value

Me
ut+�t � 2ut + ut��t

�t2
+Keu = f

ut+�t = �t2 M�1
e (f �Keu) + 2ut � ut��t

ut��t = �t2 M�1
e (f �Keu) + 2ut � ut+�t

Forward

Backward
! Initial value might need to be reseted periodically when attenuation is present !
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“Rigid” elastic mirror

A) Record 
displacement at all 
grid nodes on the 

mirror  

B) Force the 
displacement to 

match the recorded 
values  
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Time Reversed

Direct
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Summary for the rigid mirror :

• Perfect accuracy

• Mirror must match the elements border

• Mirror is not transparent

• We need to store N = 3Sh2
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Transparent mirror using a set of point sources

Summary

We present a methodology that provides a new perspective on 
modeling and inversion of wave propagation satisfying time-
reversal invariance and reciprocity in inhomogeneous media. 
The approach relies on a representation theorem of the wave 
equation to express the Green's function between points in the 
interior as an integral over the response in those points due to
sources on a surface surrounding the medium. Following a 
predictable initial computational effort, Green's functions 
between arbitrary points in the medium can be computed as 
needed using a simple crosscorrelation algorithm.

Introduction

In time-reversed acoustics, invariance of the wave equation 
for time-reversal can be exploited to focus a wavefield 
through a highly scattering medium on an original source 
point. Derode et al. (1995) and Cassereau et al. (1992) 
realized that the acoustic representation theorem can be used 
to time-reverse a wavefield in a volume by creating secondary 
sources (monopole and dipole) on a surface surrounding the 
medium such that the boundary conditions correspond to the 
time-reversed components of a wavefield measured there. 
These secondary sources give rise to the back-propagating, 
time-reversed wavefield inside the medium that collapses 
onto itself at the original source location. See also figure 1.

In interferometry, waves recorded at two receiver locations 
are correlated to find the Green's function between the 
locations. Interferometry has been successfully applied to 
helioseismology (Rickett, 2002), ultrasonics (Weaver, 2001), 
and exploration seismics (Wapenaar, 2004). Recently it was 
shown that there exists a close link between the time-reversed 
acoustics and interferometry disciplines when Derode et al. 
(2003) analyzed the emergence of the Green's function from 
field-field correlations in an open scattering medium in terms 
of time-reversal symmetry. The Green's function can be 
recovered as long as the sources in the medium are distributed 
forming a perfect time-reversal device. A rigorous proof for 
the general case of an arbitrary inhomogeneous elastic 
medium was presented by Wapenaar (2004).

Figure 1: Schematic drawing of time-reversal/interferometry. A closed surface S surrounds a 
volume V representing an inhomogeneous medium. In a first step, a source at A generates a 
wavefield (blue) that is recorded by the receivers on the surrounding surface. In the second 

step, the receivers act as secondary sources and emit the recorded wavefield backwards 
(red). When the time-reversed wavefield is measured in B, the time-reversed Green’s 

function between A and B is observed (Derode et al., 2003).
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Sampling The sources on the surrounding surface in eq. (4) 
have to be spaced according to the local Nyquist wave 
number such that the wavefield on the boundary in the 
reciprocal point of interest gathers [see eq. (3)] is not aliased.

Boundary conditions Note that according to eqs. (3) and (4) 
no receivers or sources are required for interferometry on 
those parts of the surrounding surface with homogeneous 
boundary conditions (i.e., completely rigid or free interfaces) 
because of the symmetry of terms involving particle 
displacement and traction. Physically, this is because no 
energy leaves the medium through such the surfaces.

Spatial filtering When absorbing (i.e., radiation or outgoing) 
boundary conditions are present on the surrounding surface, 
the wavefield and its gradient are directly related and the 
traction can be computed from the displacement by spatial 
filtering. This further reduces the initial computational burden
of the methodology outlined below.

Robust modeling Recent experimental and theoretical work 
indicates that time-reversed imaging is robust with respect to 
perturbations in the boundary conditions (Derode et al., 2003; 
Snieder and Scales, 1998). When the wave propagation is 
heavily dominated by multiple scattering even a single source 
may be sufficient to refocus essential parts of a time-reversed 
signal. Also for more deterministic models, as in our example 
it is possible to substantially reduce the number of boundary 
sources and still recover essential parts of the signal. 

Simultaneous sources We also experimented with exciting 
the boundary sources simultaneously by encoding the source 
signals using pseudo-noise sequences and with simultaneous 
sources distributed randomly in the medium (Derode et al., 
2003). However, there is a well known limit to the quality of 
separation of such sequences of a given length when emitted 
simultaneously (Welch, 1974). Insufficient separation of 
sequences manifests itself in an increased noise level in the 
final Green's functions. 

References

Cassereau, D., and Fink, M., 1992, Time-reversal of ultrasonic fields -- Part III: Theory of 

the closed time-reversal cavity: IEEE Trans. Ultrason. Ferroellectr. Freq. Control, 39, 579.

de Rosny, J., and Fink, M., 2002, Overcoming the Diffraction Limit in Wave Physics Using 

a Time-Reversal Mirror and a Novel Acoustic Sink: Phys. Rev. Lett., 89, 124301.

Derode, A., Roux, P., and Fink, M., 1995, Robust Acoustic Time Reversal with High-Order 
Multiple Scattering: Phys. Rev. Lett., 75, 4206.

Derode, A., Larose, E., Tanter, M., de Rosny, J., Tourin, A., Campillo, M., and Fink, M., 
2003, Recovering the Green's function from field-field correlations in an open scattering 

medium (L): J. Acoust. Soc. Am., 113, 2973.

Rickett, J. E., and Claerbout, J. F., 2002, Calculation of the sun's acoustic impulse response 
by multi-dimensional spectral factorization: Sol. Phys., 192,203.

Schuster, G. T., 2001, Seismic interferometry: Tutorial: Seismic interferometry: Tutorial:, 
Etended Abstracts of the 63rd Ann. Internat. Mtg. of the Europ. Assoc. Geosc. Eng., A{32.

Snieder, R., and Scales, J. A., 1998, Time-reversed imaging as a diagnostic of wave and 

particle chaos: Phys. Rev. E, 58, 5668.

Wapenaar, K., Draganov, D., Thorbecke, J., and Fokkema, J., 2004, Relations between 

Reflection and Transmission Responses of 3-D Inhomogeneous media: G.J.I., 156, 179.

Wapenaar, K., 2004, Retrieving the Elastodynamic Green's Function of an Arbitrary 
Inhomogeneous Medium by crosscorrelation: Phys. Rev. Lett., 93, 254301.

Weaver, R. L., and Lobkis, O. I., 2001, Ultrasonics without a Source: Thermal Fluctuation 
Correlations at MHz Frequencies: Phys. Rev. Lett., 87, 134301.

Welch, L. R., 1974, Lower Bounds on the Maximum Cross Correlation of Signals: IEEE 

Trans. Inform. Theory,20, 397.

Theory

Cassereau et al. (1992) showed that for partially open media 
time-reversal of a general wavefield in a volume can be 
achieved by  measuring the wavefield and its gradient on the 
enclosing surface, time-reversing those measurements and 
letting them act as a boundary condition. Their approach 
follows from an application of the Kirchhoff integral and is 
easily extended to elastodynamic wave propagation using the 
representation theorem (Snieder, 2002):

the representation theorem (1)

In equation (1), the Green’s tensor, Gin(x,x’), denotes the 
displacement at location x in the i direction due to a unit point 
force at x’ in the n direction, cijkl=cijkl(x) is the elasticity 
tensor, and n the outward unit normal as defined in Fig. 1. 
Thus, if the exciting force fn(x’) is known throughout the 
volume V and when the wavefield un(x’) and the associated 
traction njcijkldkul(x’) are known on the surface S, one can 
compute the wavefield everywhere within the volume.

To time-reverse the wavefield ui(x), we simply substitute the 
complex conjugate of the wavefield (phase-conjugation being 
equivalent to time-reversal), its gradient and its sources into 
the elastodynamic representation theorem. This gives:

time-reversing an arbitrary wavefield (2)

where a star (*) denotes complex conjugation. Equation (2) 
can be used to compute the time-reversed wavefield at any 
location, not just at an original source location. 

Now, say that the wavefield ui(x) was originally set-up by a 
point force source at location x'' pointing in the m-direction 
[i.e., fi(x)=dimd(x-x'') and ui(x)=Gim(x,x'') is Green's tensor] 
Inserting these expressions in equation (2) gives:

time-reversing a Green’s state (3)

Equation (3) agrees with other recent experimental and 
theoretical observations (Derode et al., 2003; Wapenaar, 
2005). Using reciprocity: Gij(x',x)=Gji(x,x'), we can rewrite 
eq. (3) so that it only has sources on the boundary enclosing 
the medium:

interferometric modelling (4)

Hence, Green's function between two points x and x'' can be 
calculated once the Green functions between the enclosing 
boundary and each of these points are known.

Methodology

A highly efficient two-stage modeling strategy follows from 
equation (4): first, the Green function terms, G and d'G, are 
calculated from boundary locations to internal points in a 
conventional forward modeling phase; in a second inter-
correlation phase, the integral is calculated requiring only 
cross-correlations and numerical integration. 

Since the computational cost of typical forward modeling 
algorithms (e.g., FD) does not significantly depend on the 
number of receiver locations but mainly on the number of 
source locations, efficiency and flexibility are achieved 
because sources need only be placed around the bounding 
surface, not throughout the volume. 

To calculate Green's function between two points the 
recordings in the first point due to the traction sources on the
boundary are cross-correlated with the recordings in the 
second point due to the point force sources, and vice-versa.  
The resulting cross-correlations are subtracted and 
numerically integrated over the boundary of source location. 
A flowchart of such a methodology is given in Fig. 2, below.

Computational aspects

Efficiency The new method is particularly attractive in 
applications where Green's functions are desired between a 
large number of points interior to a medium, but where there 
are no common source or receiver points. 

Flexibility The method also offers great flexibility where the 
exact interior points are not known in advance because 
Green's functions can be computed on an "as needed" basis 
from Green's functions between points on the surrounding 
surface and its interior. We have shown how the latter Green's 
functions constitute a common component of all Green's 
functions in the medium through equation (4). 
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Figure 2: Flowchart of the proposed interferometric modeling method. The method consist 

of two main computational phases: an initial conventional forward modeling phase which 
completely illuminates the medium from the outside and a second, Green’s function look-up 
phase, which calculates the Green’s function between arbitrary pairs of points in the interior 

using only crosscorrelations and summations without requiring additional forward modeling. 
Together, step 5 and 6 comprise numerical evaluation of equation (4).

1. Define boundary with source 
locations, points of interest

2. Simulate all boundary sources,
store field at points of interest

3. Sort data into point of
interest gathers

4. Retrieve gathers for 
two points of interest

5. Crosscorrelate appropriate 
components and sourcetypes

6. Sum (integrate) the 
crosscorrelation gathers

PHASE I: 
Initial computations

PHASE II: 
Inter-correlation

n
x’

A

S
V

B

Representation theorem

Dipole 
source

Monopole 
source
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Direct

Time Reversed
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Direct

Time Reversed Time Reversed Time Reversed

Pure initial value Mixed initial / boundary value Pure boundary value

OK Not OK OK
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Figure 5. Explosion source radiation. Snapshots at t = 157.3 s are shown for both the reference (eq. 46, left) and the SEM-based solution (centre) for an
explosion source at r s = 3835 km with dominant period T 0 = 70 s. While the direct P wave away from the source is identical between both cases, one can
observe differences in the immediate source vicinity. Seismograms labelled 1 to 4 represent locations downwards along the axis, and 5 to 8 are locations
perpendicular from the axis as shown in the zoomed snapshots at the bottom left. The black square is the physical source location, large black dots are the
non-zero source vector locations, small black circles denote (shared) element edges and corners. Analytical and SEM traces vastly differ within the source
element, but are acceptably similar for trace 4. Fractions of λ depict respective distances in terms of dominant wavelengths, that is, all locations are still well
inside the near-field regime. We conclude that the source-bearing elements are partly erroneous as expected, but one element away yields satisfactory results.

in a global sense, particularly when attention is focused on diffracted or triplicated phases. Furthermore, the spatial extent of these elements
may well be within the source location uncertainty. Additionally, we do not observe any spurious shear motion trailing the compressional
wave. Should any such phase exist, then it does not seem to directly originate in the source representation of a spread-out moment tensor.
Note however, in this context, that our source location favourably coincides with a GLL point, resulting in higher accuracy than freely chosen
(ξ , η) (Deville et al. 2002).

5.3 Global wave propagation

After validating the stiffness terms and source terms, respectively, we now take on full global wave propagation. The moment-tensor source
with magnitude M0 = 1020 Nm is located at a depth of r s = 344 km, the unity single force is applied at the surface r r = r 0 and the respective
source time functions are Dirac delta functions. We record seismic displacement along the surface within the φ = 0 plane at epicentral distances
7.5◦ ≤ θrec ≤ 180◦, separated by 7.5◦, using the mesh in Fig. 1 and polynomial order N = 5. The time step is &t = 0.25 s leading to a Courant
number C = 0.37, and seismogram length tmax = 8000 s. We convolve the Green functions with a Ricker wavelet (first derivative of a Gaussian
as defined in Section 5.2) of dominant period T0 = 100 s. The number of grid points per wavelength is nλ = vT0/h, where v is the seismic
velocity and h is the grid spacing. For the mesh and parameter choice in this section, the dominant frequencies of an S wave are sampled by
8 ≤ nλ ≤ 85 grid points, depending on the location within the mesh. Note that maximal frequencies of the source time functions are about
two times higher than dominant frequencies, such that nλ is in accordance with heuristic choices in 3-D SEM simulations (e.g. Komatitsch &
Tromp 2002a). We remain at relatively low frequencies in this test case since the SEM is scalable and the critical parameter, the number of
points per wavelength, is independent of the period. Our meshes are automatically adapted to these numerical parameters accordingly and as
such, absolute frequencies do not intrinsically determine accuracy interpretations. Rather than describing additional issues resulting from high
frequencies such as parallelization or computation time, our objective here is to delineate the accuracy of the whole wavefield penetrating the
sphere for all source types. All SEM-based seismograms are compared to synthetics from normal-mode summation, using a mode catalogue

C© 2007 The Authors, GJI
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Meü+Keu = f f = �M . r�(x� xs)S(t)

“Standard method”
Express the Dirac delta 
function in the spectral 

element basis to get the f 
coefficients

“Perfect Source”
Substitute the displacement 
with an analytical solution to 

get the f coefficients

un = Mpq ⇤Gnp,q
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Direct

Direct Time Reversed

Time Reversed

“Standard”  
Source

“Perfect” 
Source
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Summary for the 
point source mirror :

• Variable accuracy depending on the number of  
sources

• Can handle arbitrary geometry (at the expense of 
adding more sources)

• Mirror is transparent

• We need to store N = 6Sh2
s
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Perfect transparent mirror using 
discrete differences

Meü+Keu = 0

w = 0 ouside the mirror

w = 1 inside the mirror

M
e

(wü) +K
e

(wu) = f
Mirror

Forward simulation

Compute mirror source coefficients
by differentiating the 
windowed wavefield

Similar to grid injection 
when used  with finite 

differences (see 
Robertsson 2000)
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Forward Time reversed
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Summary for the mirror based 
on discrete differences :

• Perfect accuracy

• Can handle arbitrary geometry 

• Mirror is transparent

• We need to store N = 3
p

2
Sh2 General

N = 3Sh2 Best
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Why transparency matters ...
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Full Mirror
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Unperturbed Perturbed
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G

Receiver

Mirror

Absorbing 
Boundaries

Local modeling 
+

field extrapolation 
=

synthetic data at receivers
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1070 T. Nissen-Meyer, A. Fournier and F. A. Dahlen
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Figure 1. The mesh architecture. The geometric mapping mentioned in Section 3.1 transforms the unit square element (a), within which all computations are
undertaken, into any quadrilateral element !e or !̄e (b). (c) shows the actual mesh used in the simulations described in Section 5. Three different element
geometries, as defined in Appendix A1 and Fig. A1, are used to construct this mesh such that spacing variations are kept small. The radius of the earth is r0,
and the left straight edge is the non-physical axis of symmetry for which we employ different discretization rules due to the appearance of singularities.

3.1 Geometrical mapping and discretization

As in any element-based method, we discretize and decompose the continuous, open domain ! with boundary ∂! into a union of non-
overlapping elements. For clarity, we shall distinguish the so-called axial elements, which share an edge with the axis of symmetry s = 0, from
the remaining ones. Any axial element is then denoted by !̄e, e = 1, . . . , n̄, while a non-axial element is represented by !e, e = 1, . . . , n,
such that the total number of elements forming the skeleton of the spectral-element mesh is n + n̄. Throughout the paper, we will consistently
utilize an overbar to identify axial quantities. This decomposition permits us to break any global integration over ! up into n + n̄ local
integrations, each spanning their respective elements, such that we define all integrands on the elemental level and only connect these to the
global system when marching forward in time, as detailed in Section 4. In the 2-D spectral-element discretization used here, we confine !e

or !̄e to be a quadrilateral image of a reference square spanning −1 ≤ ξ ≤ 1, −1 ≤ η ≤ 1, defined by the invertible mapping s = s(ξ , η),
z = z(ξ , η) (Figs 1a and b). The exclusion of other geometries such as triangular elements will not hamper the feasibility of our approach
given the spherical nature of spherical-earth discontinuities, that is, the mildly deformed elemental shape. The D-shaped, planar domain with
radius r0 is shown in Fig. 1(c), along with the mesh discretization as used throughout this paper. Note that we included several conforming
coarsening levels to reduce grid spacing variations (Komatitsch & Tromp 2002a) which generally trade off the time step (depending on the
minimal spacing) with the frequency resolution (depending on the maximal spacing) in any numerical scheme. The centre is discretized using
rectangular elements (Chaljub 2000). The expression of the mapping depends on the elemental shape and is either analytical or subparametric
(Fournier et al. 2004). Explicit formulae and illustrations are given in Appendix A1. With a given element shape, we can then compute the
elemental Jacobian

J (ξ, η) = ∂(s, z)
∂(ξ, η)

= det

(
∂ξ s ∂ηs
∂ξ z ∂ηz

)

. (8)

Derivatives ∂ s and ∂ z of a function u(s(ξ , η), z(ξ , η)) map into the reference square as

∂su(s, z) =
[
∂ηz(ξ, η)∂ξ u(s(ξ, η), z(ξ, η)) − ∂ξ z(ξ, η)∂ηu(s(ξ, η), z(ξ, η))

]
J −1(ξ, η), (9)

C© 2007 The Authors, GJI, 168, 1067–1092
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Figure1.Themesharchitecture.ThegeometricmappingmentionedinSection3.1transformstheunitsquareelement(a),withinwhichallcomputationsare
undertaken,intoanyquadrilateralelement!eor¯!e(b).(c)showstheactualmeshusedinthesimulationsdescribedinSection5.Threedifferentelement
geometries,asdefinedinAppendixA1andFig.A1,areusedtoconstructthismeshsuchthatspacingvariationsarekeptsmall.Theradiusoftheearthisr0,
andtheleftstraightedgeisthenon-physicalaxisofsymmetryforwhichweemploydifferentdiscretizationrulesduetotheappearanceofsingularities.

3.1Geometricalmappinganddiscretization

Asinanyelement-basedmethod,wediscretizeanddecomposethecontinuous,opendomain!withboundary∂!intoaunionofnon-
overlappingelements.Forclarity,weshalldistinguishtheso-calledaxialelements,whichshareanedgewiththeaxisofsymmetrys=0,from
theremainingones.Anyaxialelementisthendenotedby¯!e,e=1,...,n̄,whileanon-axialelementisrepresentedby!e,e=1,...,n,
suchthatthetotalnumberofelementsformingtheskeletonofthespectral-elementmeshisn+n̄.Throughoutthepaper,wewillconsistently
utilizeanoverbartoidentifyaxialquantities.Thisdecompositionpermitsustobreakanyglobalintegrationover!upinton+n̄local
integrations,eachspanningtheirrespectiveelements,suchthatwedefineallintegrandsontheelementallevelandonlyconnectthesetothe
globalsystemwhenmarchingforwardintime,asdetailedinSection4.Inthe2-Dspectral-elementdiscretizationusedhere,weconfine!e

or¯!etobeaquadrilateralimageofareferencesquarespanning−1≤ξ≤1,−1≤η≤1,definedbytheinvertiblemappings=s(ξ,η),
z=z(ξ,η)(Figs1aandb).Theexclusionofothergeometriessuchastriangularelementswillnothamperthefeasibilityofourapproach
giventhesphericalnatureofspherical-earthdiscontinuities,thatis,themildlydeformedelementalshape.TheD-shaped,planardomainwith
radiusr0isshowninFig.1(c),alongwiththemeshdiscretizationasusedthroughoutthispaper.Notethatweincludedseveralconforming
coarseninglevelstoreducegridspacingvariations(Komatitsch&Tromp2002a)whichgenerallytradeoffthetimestep(dependingonthe
minimalspacing)withthefrequencyresolution(dependingonthemaximalspacing)inanynumericalscheme.Thecentreisdiscretizedusing
rectangularelements(Chaljub2000).Theexpressionofthemappingdependsontheelementalshapeandiseitheranalyticalorsubparametric
(Fournieretal.2004).ExplicitformulaeandillustrationsaregiveninAppendixA1.Withagivenelementshape,wecanthencomputethe
elementalJacobian

J(ξ,η)=∂(s,z)
∂(ξ,η)

=det

(
∂ξs∂ηs
∂ξz∂ηz

)

.(8)

Derivatives∂sand∂zofafunctionu(s(ξ,η),z(ξ,η))mapintothereferencesquareas

∂su(s,z)=
[

∂ηz(ξ,η)∂ξu(s(ξ,η),z(ξ,η))−∂ξz(ξ,η)∂ηu(s(ξ,η),z(ξ,η))
]

J−1(ξ,η),(9)
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Piecewise inversion ?

• A ) Compute green functions from 
receivers to mirrors in the current 
model using global simulations

• B) Perform piecewise waveform 
tomography (Possibly one 
inversion per core)

• C) Assembly of the updated model

• Iterate...

Source Receiver

Multiple Mirrors

G
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Conclusion

• We introduced a perfectly transparent elastic 
mirror allowing to reconstruct the seismic 
wavefield within a volume enclosed in a surface 
of arbitrary shape

• Combined with field extrapolation, the mirror can 
be used to Perform Local waveform tomography 
using a global dataset

• to be continued...
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