



# Towards global scale full-waveform inversion

#### Ebru Bozdağ, Hejun Zhu, Daniel Peter, Jeroen Tromp

Princeton University, Princeton, NJ, USA May 2012, Slovakia



## What we mean by full-waveform tomography

- Forward simulations in 3D models
- Fréchet kernels in 3D background models
- Use of complete seismograms at three components
- Use of both phase and amplitudes

# Towards global adjoint tomography

# **Global tomography**



- mostly based on ray theory, recently finitefrequency effects are also taken into account
- 1D background models
- Combination of different data sets

www.quest-itn.org

Crustal corrections

# **Challenges in global tomography**

- Theoretical limitations
  - Finite-frequency effects have become important

# **Challenges in global tomography**

- Theoretical limitations
  - Finite-frequency effects have become important
- Data coverage
  - Uneven distribution of earthquakes and stations on the globe

## World seismicity



#### http://www.iris.edu/dms/seismon.htm

## **Seismic stations**



3rd QUEST Workshop Tatranska Lomnica, Slovakia, May 2012

<u>www.quest-itn.org</u>

## **Seismic stations**



## **Seismic stations**



## **Challenges in global tomography**

- Theoretical limitations
  - Finite-frequency effects have become important
- Data coverage
  - Uneven distribution of earthquakes and stations on the globe
  - Usable data is subjected to the forward theory

# **Challenges in global tomography**

- Theoretical limitations
  - Finite-frequency effects have become important
- Data coverage
  - Uneven distribution of earthquakes and stations on the globe
  - Usable data is subjected to the forward theory
- Crustal effects

3rd QUEST Workshop Tatranska Lomnica, Slovakia, May 2012

• Can be highly nonlinear, thus "crustal corrections" are questionable

## **3D wave simulations - Adjoint tomography**

- Full nonlinearity of wave propagation
- Dramatic increase in usable data, resulting better data coverage
- 3D background models help reduce nonlinearity of problem
- Iterative update of models
- No crustal corrections!

## Outline

- Numerical simulations
- Source inversions
- Adjoint tomography
  - 1st iteration results!

## **Numerical simulations**

- SPECFEM3D\_GLOBE (Komatitsch & Tromp 2002)
- 3D Reference model: S362ANI (Kustowski et al. 2008)
   + Crust2.0 (Bassin et al. 2000)
- Topography/bathymetry/attenuation/ellipticity/ rotation/gravity
- Length of seismograms = 100 m
- Tmin =  $\sim 27$  s

## **Implementation of crust in simulations**



www.quest-itn.org

## 255 global CMT earthquakes

![](_page_16_Figure_1.jpeg)

## **Source inversions - summary**

![](_page_17_Figure_1.jpeg)

www.quest-itn.org

# Adjoint tomography

## **Earthquake-station distribution**

![](_page_19_Figure_1.jpeg)

## 253 global CMT events ( $5.8 \le Mw \le 7.0$ ) Data from IRIS & ORFEUS

## **Inversion strategies**

#### Multitaper traveltime measurements

$$\chi_c = \frac{1}{N_c} \sum_{s=1}^{S} \sum_{i=1}^{N_c^s} \int w_i(\omega) \left[ \frac{\Delta \tau_i(\omega)}{\sigma_i(\omega)} \right]^2 d\omega$$

3rd QUEST Workshop Tatranska Lomnica, Slovakia, May 2012

 $\chi_c$  : misfit per category

 $N_c$  : number of picks

per category

## **Inversion strategies**

#### Multitaper traveltime measurements

$$\chi_c = \frac{1}{N_c} \sum_{s=1}^{S} \sum_{i=1}^{N_c^s} \int w_i(\omega) \left[ \frac{\Delta \tau_i(\omega)}{\sigma_i(\omega)} \right]^2 d\omega$$

 $\chi_c$  : misfit per category  $N_c$  : number of picks per category

$$\chi^{total} = \chi^{27-60s} + \chi^{60-120s}$$

P-SV on vertical
 P-SV on radial
 SH on transverse

4) P-SV-Rayleigh on vertical
5) P-SV-Rayleigh on radial
6) SH-Love on transverse

## **Data selection**

#### 2008, May 31, Mid-Indian Ridge event Mw=6.4, depth=6.5 km

![](_page_22_Figure_2.jpeg)

![](_page_22_Figure_3.jpeg)

![](_page_22_Figure_4.jpeg)

window selection: FLEXWIN (Maggi et al. 2009)

## **Data selection**

#### 2008, May 31, Mid-Indian Ridge event Mw=6.4, depth=6.5 km

![](_page_23_Figure_2.jpeg)

## **Cross-correlation time-shifts**

![](_page_24_Figure_1.jpeg)

#### ~2.2 million measurements

3rd QUEST Workshop Tatranska Lomnica, Slovakia, May 2012

www.quest-itn.org

## Line search with 24 test events

27 - 60 s

![](_page_25_Figure_2.jpeg)

![](_page_25_Figure_3.jpeg)

![](_page_25_Figure_4.jpeg)

#### 60 - 120 s

1

1.5

![](_page_25_Figure_6.jpeg)

![](_page_25_Figure_7.jpeg)

![](_page_25_Figure_8.jpeg)

![](_page_25_Figure_9.jpeg)

perturbation (%)

3rd QUEST Workshop Tatranska Lomnica, Slovakia, May 2012

#### www.quest-itn.org

### **M01 - M00**

150 km

![](_page_26_Figure_3.jpeg)

### **M01 - M00**

660 km

![](_page_27_Figure_3.jpeg)

M01 - M00

![](_page_28_Figure_2.jpeg)

## **M01 - 1DREF**

![](_page_29_Figure_2.jpeg)

![](_page_30_Picture_0.jpeg)

#### • Computational requirements

| CPU hours            | 1 event | 1 iteration<br>(255 events) | 20 iterations |
|----------------------|---------|-----------------------------|---------------|
| forward +<br>adjoint | 3000    | 765,000                     | 15,300,000    |

- Data processing manual quality check
- Uneven distribution of source and receivers Balance in gradient

## Remedies

- More computational resources!
- Speeding up the forward/adjoint simulations: GPU computing
- Increasing data: using more earthquakes!

 First slide global wave propagation picture: April 12, 2012 Gulf of California Earthquake (Mw = 7, depth = 14 km) (global.shakemovie.princeton.edu).

![](_page_32_Picture_1.jpeg)

 Master slide seismogram is from SPICE presentation template (<u>www.spice-rtn.org</u>).