Isotropic and Anisotropic Structure of the Upper Mantle, Imaged with Surface and S waveform Tomography

Andrew Schaeffer^{1,2} Sergei Lebedev¹

- 1. Dublin Institute for Advanced Studies
- 2. University College Dublin

Outline

- 1. Method and Dataset
 - 2. Empirical Validity of Surface Wave Ray Theory
 - 3. Global anisotropic upper mantle shear velocity model

New generation of seismic Earth models

- Improvements in all aspects of Seismic Modelling
 - Computational Facilities
 - Theoretical and Methodological Advancements
 - Deployment of High-Resolution Large-Scale Seismic Arrays
- Introduced New Challenges to Seismology
 - Management, Distribution, Processing, QC
- New generation of seismic Earth models capable of resolving tectonic unit scale features across entire continents
- Require accurate and efficient methods to fully exploit each and every seismogram

http://www.ngdc.noaa.gov/mgg/global/global.html

Inversion Technique and Reference Model

- Two Step Inversion:
 - 1. Automated Multimode Inversion (AMI) of each seismogram
 - 2. Linear Tomographic Inversion
- Hybrid 3D Reference Model
 - Crustal model based smoothed Crust2
 - Mantle velocity AK135 recomputed at reference period 50s

Automated Multimode Inversion

- Sensitivity-volume-average perturbations are extracted by waveform fitting
- Multiple time-frequency windows isolate fundamental and higher modes
- Simultaneous inversion of all windows using synthetic seismograms
- Misfit threshold (5%) to ensure quality fits
- Measure phase velocities for modes with significant contributions

All Figures: Lebedev et. al., 2005 (GJI)

3D Tomographic Inversion

- Linear equations from AMI combined into large system
- Construct 2 co-registered triangular grids (Wang and Dahlen, 1995)
- Sensitivity kernels to map and weight constraints onto grid knots
- Re-weighting common paths to produce more even sampling distribution
- Regularization using Lateral Smoothing, Gradient Damping, Norm Damping
- Outlier Analysis and Removal

Lebedev and van der Hilst, 2008 (GJI)

-- DIAS Seismology and Geodynamics Group --

New global model of the upper mantle

-- DIAS Seismology and Geodynamics Group --

What's in the dataset?

What's in the dataset?

Empirical dispersive structure of the upper mantle

- Fundamental and Higher mode phase velocities measured by AMI
- Group Velocities computed from phase velocities
 - Modes 0 through 16
- Computed dispersion curves for for AK 135

-- DIAS Seismology and Geodynamics Group --

Empirical dispersive structure of the upper mantle

- Fundamental and Higher mode phase velocities measured by AMI
- Group Velocities computed from phase velocities
 - Modes 0 through 16
- Computed dispersion curves for AK 135

-- DIAS Seismology and Geodynamics Group --

Empirical Validity for Surface Wave Ray Theory

-- DIAS Seismology and Geodynamics Group --

Empirical Validity for Surface Wave Ray Theory

-- DIAS Seismology and Geodynamics Group --

Empirical Validity for Surface Wave Ray Theory

-- DIAS Seismology and Geodynamics Group --

Shear velocity structure of the upper mantle

← Horizontal slice at 80km

- Striking low velocity anomalies associated with spreading ridges
- Strong contrasting high velocity anomalies indicating shallowest portions of cratonic cores

Horizontal slice at 110km \rightarrow

- Dichotomy between oceans and continents
- Spreading ridges still evident
- India-Asia collision
- Cameroon Line Volcanic belt

Shear velocity structure of the upper mantle

← Horizontal slice at 150km

- Spreading ridge anomalies terminated at shallower depths
- Dominated by fast, cold roots of continental cratons

Horizontal slice at 200km \rightarrow

- Strength of heterogeneity weakened
- High velocity anomalies at the base of continental roots
- Evidence for subduction zones

Azimuthal Anisotropy

Pacific Ocean Anisotropy Stratification

- Fast axis of azimuthal anisotropy aligned with spreading direction at modern ridges
- Frozen anisotropy in ancient oceanic lithosphere correlated to paleo-spreading vectors (Smith *et al.*, 2004) from shearing of uppermost mantle during spreading
- In Asthenosphere, fast axis aligned with the direction of current plate motions across whole pacific

Benchmarking Magnitude of Azimuthal Anisotropy

-- DIAS Seismology and Geodynamics Group --

Anisotropy beneath Western North America

Continental Anisotropy more complex

- Challenge for global tomography
- Complex patterns of anisotropy related to past and ongoing tectonics in western North America

Anisotropic Structure beneath Tibet

±3% ±6%

Transition Zone Structure

- Most major subduction zones are marked by high velocity slabs within the transition zone
- Evidence for subducted Tethyan lithosphere within the transition zone (Hafkenscheid *et al.,* 2006 (JGR))

Conclusions

- Spectacular growth in the amount of broadband data: opportunity for a new generation of tomographic models
- Our new dataset: multimode-waveform fits for 1 million broadband seismograms
 - 750 000 vertical component (Rayleigh) and 250 000 horizontal (Love)
 - Provides statistical insight to validity of the approximations
 - Upper mantle heterogeneity as visualized empirically by fundamental and higher mode dispersion
- Our new model: constrained by waveforms of 550 000 vertical component seismograms
- Higher resolution of upper mantle structure and anisotropy globally compared to models of only a few years ago
 - Clear images of the lithosphere-asthenosphere system beneath continents and oceans
 - Detailed snapshots of subduction in western North America, and along the Tethys convergence zone
 - Accurate retrieval of the orientation and amplitude of anisotropy where they vary smoothly (Pacific Ocean)
 - Improved resolution of anisotropy in well sampled continental regions, e.g., Western North America, India-Asia collision zone

