Investigating the accuracy of Green's function estimates from Z-Z and Z-R correlations

Dylan Mikesell, Kasper van Wijk, Matt Haney, Vera Schulte-Pelkum, Josh Stachnik, Thomas Blum, Roel Snieder & Haruo Sato

3rd QUEST Workshop

22 May 2012

Correlation of Rayleigh waves

Aki's SPAC (1957)

$$\phi_{ij}(\mathbf{x}, \mathbf{x}', \omega) = \begin{bmatrix} \phi_{zz} & \\ & \phi_{rr} & \\ & & \phi_{tt} \end{bmatrix}$$

AZU

AND NO

Correlation of Rayleigh waves

Aki's SPAC (1957)

$$\phi_{ij}(\mathbf{x}, \mathbf{x}', \omega) = \begin{bmatrix} \phi_{zz} & \\ & \phi_{rr} & \\ & & \phi_{tt} \end{bmatrix}$$

Nakahara (2006)

$$\mathcal{G}_{ij}(\mathbf{x},\mathbf{x}^{'},t)\propto \mathscr{F}\left(\phi_{ij}(\mathbf{x},\mathbf{x}^{'},\omega)
ight)$$

AZU

AND V

Is noise really isotropic?

Is noise really isotropic?

The seismic noise wavefield is not diffuse

Francesco Mulargia^{a)} Dipartimento di Fisica, Settore di Geofisica, Università di Bologna, Bologna, Italy (Received 28 July 2011; revised 16 January 2012; accepted 3 February 2012)

the latter for azimuthal isotropy and spatial homogeneity. This procedure is then applied to the seismic noise recorded at 65 sites covering a wide variety of environmental and subsoil conditions. Considering the instantaneous oscillation vector measured at single triaxial stations, the hypothesis of azimuthal isotropy is rejected in all cases with high confidence, which makes the spatial homogeneity test unnecessary and leads directly to conclude that the seismic noise wavefield is not diffuse. However,

Isotropic noise

$$\phi_{ij}(\mathbf{r} = |\mathbf{x} - \mathbf{x}'|, \omega) = \begin{bmatrix} \phi_{zz} & \phi_{rr} \\ \phi_{tt} & \phi_{tt} \end{bmatrix}$$

$$\phi_{ij} \approx P^R(\omega) \times \sum_{m=0}^{\infty} J_m\left(\frac{\omega_0}{c}r\right) \operatorname{Re}[\gamma_m^{ij}]$$

)ÉC AZUr

Isotropic noise

$$\phi_{ij}(\mathbf{r} = |\mathbf{x} - \mathbf{x}'|, \omega) = \begin{bmatrix} \phi_{zz} & \\ \phi_{rr} & \\ \phi_{tt} \end{bmatrix}$$

$$\phi_{ij} \approx P^{R}(\omega) \times \sum_{m=0}^{\infty} J_{m}\left(\frac{\omega_{0}}{c}r\right) \operatorname{Re}[\gamma_{m}^{ij}]$$

$$\gamma_m^{zz} = \frac{1}{2\pi} \int_0^{2\pi} p(\theta) \exp[-im(\theta - \psi)] d\theta$$

)ÉC AZUr

Isotropic noise

$$\phi_{ij}(\mathbf{r} = |\mathbf{x} - \mathbf{x}'|, \omega) = \begin{bmatrix} \phi_{zz} & \phi_{rr} \\ \phi_{tt} & \phi_{tt} \end{bmatrix}$$

$$\phi_{ij} \approx P^R(\omega) \times \sum_{m=0}^{\infty} J_m\left(\frac{\omega_0}{c}r\right) \operatorname{Re}[\gamma_m^{ij}]$$

$$\gamma_m^{zz} = \frac{1}{2\pi} \int_0^{2\pi} p(\theta) \exp[-im(\theta - \psi)] d\theta$$

$$p(\theta) = constant = 1$$

)ÉC AZUr

Anisotropic noise

CO AZU

Anisotropic noise

ZZ Artifacts

GÉO AZUr

1

1

ZZ Artifacts

GÉO AZUr

Correlation of Rayleigh waves

$$\phi_{ij}(|\mathbf{x} - \mathbf{x}'|, \omega) = \begin{bmatrix} \phi_{zz} & \phi_{zr} & 0\\ \phi_{rz} & \phi_{rr} & 0\\ 0 & 0 & \phi_{tt} \end{bmatrix}$$

Haney et al., in review G.J.I. (2012)

AZU

A REAL

ZZ vs. ZR Artifacts

erc

Géo Azur

Rayleigh waves

erc

Géo Azur

ALL REAL

Rayleigh waves

ANN .

Rayleigh waves

Multicomponent correlations

7⊖⊙ AZUľ

ALL ALL

Multicomponent correlations

)ÉC AZUr

A REAL

Ambient noise example

van Wijk et al., GRL (2011)

AZU

ALL NO

Ambient noise example

Ambient noise example

$$G_c(\mathbf{x}, \mathbf{x}', t) \approx G_{zz}(\mathbf{x}, \mathbf{x}', t)$$

$$G_{c}(\mathbf{x}, \mathbf{x}', t) = \mathscr{H} \left[G_{zr}(\mathbf{x}, \mathbf{x}', t) - G_{rz}(\mathbf{x}, \mathbf{x}', t) \right]$$

van Wijk et al., GRL (2011)

 G_{zz}

 G_{zz} vs. G_c

erc

Dispersion comparison

Conclusion

- ϕ_{zr} and ϕ_{rz} are less sensitive to anisotropic Rayleigh wave noise
- G_c has higher 2R larger SNR compared G_{zz}

Future Directions

- How does this influence the convergence rate of G?
- Can we use smaller inter-station distances in ANT?
- Do ϕ_{zr} and ϕ_{rz} offer independent phase-velocity dispersion estimates, complimentary to ϕ_{zz} and ϕ_{rr} ?

2 station phase-velocity dispersion

 $\phi_{ij} \propto \sum_{m=0}^{\infty} J_m\left(\frac{\omega_0}{c(\omega_0)}r\right)$

)ÓC Azur

2 station phase-velocity dispersion

Batholiths comparison

