

Finite source model determinations for large magnitude earthquakes using longperiod normal mode data

K. Lentas⁽¹⁾, A. M. G. Ferreira⁽¹⁾, M. Vallée⁽²⁾, E. Clévédé⁽³⁾

⁽¹⁾School of Environmental Sciences, University of East Anglia, Norwich, UK ⁽²⁾Géoazur, IRD, Nice, France ⁽³⁾Institut du Globe de Physique, Paris, France

Summary

- 1. Testing existing global subduction earthquake source models
- 2. Probabilistic normal mode source model inversion

Summary

1. Testing existing global subduction earthquake source models

2. Probabilistic normal mode source model inversion

1. Source model validation tests

The GCMT and SCARDEC methods

- Semi-automated technique
- Long-period body-wave & surface-wave data (45 135 s)
- Point source approximation (centroid location)
- Time needed > 3h

http://www.globalcmt.org/

- Automated technique
- Long-period body-wave data (33 200 s)
- Point source parameters & STF
- No location determination
- Time needed ~ 40 min 20030925_Hokkaido_

Subduction earthquakes studied

• $M_w \ge 7.8$ subduction zone earthquakes over the last 20 years (Vallée et al., 2010) • 8 selected earthquakes having large differences between GCMT and SCARDEC ($\Delta \delta_i \ge \Delta \delta^{average}$)

Lentas, Ferreira and Vallée, 2012 (in prep.)

Normal mode spectra comparisons

1. Source model validation tests

Body-wave comparisons

Comparisons with results taken from the literature

Summary

1. Testing existing global subduction earthquake source models

2. Probabilistic normal mode source model inversion

2. Normal mode source model inversion Finite source description

2. Normal mode source model inversion Finite source description

2. Normal mode source model inversion

Synthetic test

2. Normal mode source model inversion Sensitivity of the inversion to location

2. Normal mode source model inversion Sensitivity of the inversion to the Earth's structure

2. Normal mode source model inversion **Probabilistic normal mode source inversion**

2. Normal mode source model inversion **Probabilistic normal mode source inversion**

Sumatra 2012 normal mode spectra

Sumatra 2012 normal mode spectra

Sumatra 2012 normal mode spectra

Conclusions

- The SCARDEC source parameters explain equally well the normal mode data compared to GCMT.
- Body-wave tests combined with source parameters published in the literature, suggest that the SCARDEC method determines the fault dip angle slightly better than GCMT.
- We developed a linear inversion code which determines the singlets' initial phases of split multiplets and from these measurements, the rupture time and length can be retrieved.
- Rupture length inversions are affected by the fault's strike and the location (epicentre, depth).
- 3D structure affects strongly both the rupture time and length.

$$\begin{aligned} \alpha_{fs}^{m}(x,\omega) &= \alpha_{ps}^{m}(x,\omega) \cdot F_{m} \\ \begin{bmatrix} d_{a_{1}}^{j} \\ d_{b_{1}}^{j} \\ d_{a_{2}}^{j} \\ d_{b_{2}}^{j} \\ \vdots \\ \vdots \\ d_{a_{n}}^{j} \\ d_{b_{n}}^{j} \end{bmatrix} &= \begin{bmatrix} G_{a_{1}}^{j} & -G_{b_{1}}^{j} \\ G_{b_{1}}^{j} & G_{a_{1}}^{j} \\ G_{b_{1}}^{j} & G_{a_{1}}^{j} \\ G_{b_{1}}^{j} & G_{a_{1}}^{j} \\ G_{b_{2}}^{j} & -G_{b_{2}}^{j} \\ \vdots \\ \vdots \\ \vdots \\ G_{a_{n}}^{j} & -G_{b_{n}}^{j} \\ G_{b_{n}}^{j} & G_{a_{n}}^{j} \end{bmatrix} \times \begin{bmatrix} Re(F_{m}) \\ Im(F_{m}) \end{bmatrix} \\ \times \begin{bmatrix} Re(F_{m}) \\ Im(F_{m}) \end{bmatrix} \\ \begin{bmatrix} X_{m_{1}} \\ X_{m_{2}} \\ \vdots \\ \vdots \\ X_{m_{n}} \end{bmatrix} = \begin{bmatrix} \frac{\pi}{T_{m_{1}}} & \frac{Lm_{s}sin(\phi)}{2r_{o}sin(\theta)} \\ \frac{\pi}{T_{m_{2}}} & \frac{Lm_{2}sin(\phi)}{2r_{o}sin(\theta)} \\ \vdots \\ \vdots \\ \vdots \\ T_{m_{n}} & \frac{Lm_{n}sin(\phi)}{2r_{o}sin(\theta)} \end{bmatrix} \\ \times \begin{bmatrix} T_{r} \\ L \end{bmatrix} \end{aligned}$$

$\alpha_{fs}^m(x,\omega) = \sum_{i=1}^{m}$	$\sum_{i=1}^{6} (\psi_i^m)$	$(x,\omega)\cdot M$	$(I_i) \cdot F_m$					
$\begin{bmatrix} \alpha_1^{ps} \\ \alpha_1^{ps} \end{bmatrix} \begin{bmatrix} \psi_1^{(M)} \\ \psi_2^{(M)} \end{bmatrix}$	$\psi_{1} = 1$ $I_{1} = 1$) $\psi_{1}^{(1)}$ $I_{1} = 1$) $\psi_{2}^{(1)}$	$M_2 = 1)$ $M_2 = 1)$	$\psi_1^{(M_3=1)}$ $\psi_2^{(M_3=1)}$	$\psi_1^{(M_4=1)}$ $\psi_2^{(M_4=1)}$	$\psi_1^{(M_5=1)}$ $\psi_2^{(M_5=1)}$	$\psi_1^{(M_6=1)}$ $\psi_2^{(M_6=1)}$		M_1 M_2
$ \begin{vmatrix} \alpha_2 \\ \vdots \\ \vdots \\ \alpha_n^{ps} \end{vmatrix} = $							×	$egin{array}{c} M_3 \ M_4 \ M_5 \end{array}$
$\begin{bmatrix} \omega_n \end{bmatrix}$ $\begin{bmatrix} \psi_n^{(M)} \end{bmatrix}$	$ \begin{pmatrix} I_1=1 \end{pmatrix} \psi_n^{(1)} \\ \begin{bmatrix} \partial a_1^p \\ \partial M \end{bmatrix} $	$M_2 = 1)$ $\frac{s}{1} \frac{\partial a_1^{ps}}{\partial M_2}$	$\psi_1^{(M_3=1)}$ $\frac{\partial a_1^{ps}}{\partial M_3}$	$\psi_n^{(M_4=1)}$ $\frac{\partial a_1^{ps}}{\partial M_4} \frac{\partial a_1^{ps}}{\partial M_5}$	$\psi_n^{(M_5=1)}$ $\frac{\partial a_1^{ps}}{\partial M_6}$	$\psi_n^{(M_6=1)}$	L	M_6
$\left[\begin{array}{c} \alpha_1^{ps} \\ \alpha_2^{ps} \end{array}\right]$	$\left \begin{array}{c} \frac{\partial a_2^p}{\partial M} \\ \\ \\ \\ \end{array}\right = \left \begin{array}{c} \frac{\partial a_2^p}{\partial M} \\ \\ \\ \end{array}\right $	$rac{\delta s_1}{\delta m_2} = rac{\partial a_2^{ps}}{\partial M_2} \cdot$	$rac{\partial a_2^{ps}}{\partial M_3}$.	$\frac{\partial a_2^{ps}}{\partial M_4} \frac{\partial a_2^{ps}}{\partial M_5}$ $\cdot \qquad \cdot$	$\left. \begin{array}{c} \frac{\partial a_2^{ps}}{\partial M_6} \\ \cdot \\ \cdot \end{array} \right \times$	$egin{array}{c c} M_1 \ M_2 \ M_3 \end{array}$		
α_n^{ps}		• მი ^{ps}	گو ^{يهي}		მი ^{ps}	$egin{array}{c} M_4 \ M_5 \ M_6 \end{array}$		
	$\lfloor \frac{\partial u_n}{\partial M}$	$\frac{\partial u_n}{\partial M_2}$	$\frac{\partial a_n}{\partial M_3}$	$\frac{\partial a_n}{\partial M_4} \frac{\partial a_n}{\partial M_5}$	$\left[\frac{\partial a_n}{\partial M_6}\right]$	L J		

Synthetic test

