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For solving the inverse problem and hence characterizing a material,  we applied one of Monte Carlo methods, the Neighbourhood Algorithm.   It is based on a full space search so that it 
samples  the entire model  space and attributes a misfit function to each solution compatible with the data  (Sambridge 1999a). Then, all the models are turned in terms of probability density 
functions (pdfs) which represent all the possible information gained from the data   (Sambridge 1999b).  This technique gives also the possibility to invert for more than one observable and thus to 
infer both stiffness and dissipation characteristics of the analysed material.  
In Figures 6-9 we show the results from the inversion of surface wave measurements recorded on a marble sample which was tested with a non-destructive technique at ultrasonic frequency of 
10-200 kHz. We inverted for shear velocity and the quality factor Qs; the compressional velocity was coupled to the shear velocity by a scaling factor and the density was assumed known. 

Tomographic inversion via a Monte Carlo approach 
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Figure 9:  Comparison be-
tween seismograms com-
puted from the model of 
Figure 8 (red traces) and 
the observed measure-
ments (black traces). 

Figure 8:  Vp, Vs (top panel) 
and Qs (bottom panel), to-
gether with their error-bars, 
computed from the pdfs of 
Figure 7 (blue and red lines, re-
spectively). We compare our es-
timated model with the initial 
one (green and orange lines) as 
well as with the model com-
puted by a non-linear least-
square approach  (light blue 
and pink lines).

Figure 6:  400X205X150 mm 
marble sample investigated 
with an ultrasonic non-
destructive  technique.

Figure 7:  Sampling of 2900 models as a function of  Vs,  Qs and  misfit in the top panel; 
and probability density function of Vs and  Qs in the bottom panel.  The boundary of Vs 
are fixed to (2.6; 3.6) km/s and those of Qs  to (80; 150).  

Conclusions 
This work proves the validity of a Monte Carlo approach for solving a waveform inversion and thus defining the 1-D stiffness and dissipation characteristics of synthetic structures and real samples at 
ultrasonic frequencies. In this context the next step is to invert also for the compressional velocity and thus to fit also the P-pick.  The importance of the analysis of synthetic structures is to benchmark 
the propagation of ultrasonic surface waves in typical materials (e.g.,  marble, unweathered and weathered concrete  and natural stone) tested with a non-destructive technique.  For example, a 
fast-velocity layer over a slow-velocity halfspace describes well  a pavement; while ,  a thin slow-velocity layer in a fast-velocity structure represents a weathered layer in an unweathered material.
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Figure 6:  Phase velocity curve from the f-k analysis (black line),  the p-f 
analysis (red line) and group velocity curve for four traces of Figure 3.

Figure 4:  Spectrum of the Green’s function in the slowness-frequency domain.  
The red hyperbola describes the aliasing limit depending on the receiver dis-
tance; while the hatched red area indicates the theoretical  slowness resolution.

Figure 2:  Spectrum of the Green’s function in the 
wavenumber-frequency domain.

Figure 1:  Compressional velocity (blue line) and shear 
velocity (red line) for a fast- and slow-velocity layers 
over a fast-velocity halfspace.

Figure 3:  Vertical component displacement of synthetic seismograms calcu-
lated for the model in Figure 1 at a frequency range between 10 and 300 kHz. 

Figure 5:  Time-frequency group velocity spectrum from the 13th trace in 
Figure 3. The white line corrisponds to the group velocity curve of the Ray-
leigh wave fundamental mode. 

Two important tools to study the surface wave propagation, and thus to characterize a layered structure,  are:  (1) a very accurate forward modelling to estimate the data from a known model; 
(2) a dispersion analysis to retrieve the frequency content of the signal distinguishing fundamental and higher modes.
The procedure applied in this work can be divided into 6 steps:
1- Define the seismic properties of a synthetic structure (Figure 1).
2- Evaluate numerically the exact Green’s function for the elastodynamic equation of a spherically layered medium by expanding  the displacement field into basis functions in the 
frequency-wavenumber (f-k) domain  (Friederich & Dalkomo, 1995) (Figure 2). 
3- Compute synthetic seismograms from the Green’s function (Figure 3).
4- Make a dispersion analysis from the slowness-frequency (p-f ) method (Forbriger,  2003) based on the slant-stack transformation of the wave-field (Figure 4).  
5- Calculate the group velocity dispersion analysis using the Multiple Filter Technique (MFT) from  Dziewonski (1969) (Figure 5). 
6- Pick the amplitude maxima of the spectral coefficients in the f-k and p-f analysis as well as the time-frequency amplitude spectrogram to compute the corrisponding phase velocity and 
group velocity dispersion curves (Figure 6).

Introduction 
Non-destructive testing based on ultrasounds allows us to detect, characterize and size discrete flaws in geotechnical  and  architecture structures  and materials. This information is needed to 
determine whether such flaws can be tolerated in future service. In typical ultrasonic experiments, only the first-arriving P-wave is interpreted, and the remainder of the recorded waveform is 
neglected. Our work aims at understanding surface waves, which are strong signals in the later wave train, with the ultimate goal of full waveform tomography. At present, even the structural 
estimation of layered media is still challenging because  material properties of the samples can vary widely, and good initial models for inversion do not often exist.  
The aim  of   the present study  is  to combine non-destructive testing with a theoretical data analysis and hence to contribute to conservation strategies of archaeological and architectural 
structures.  We analyze ultrasonic waveforms measured at the surface of a variety of samples, and define the behaviour of surface waves in structures of increasing complexity.  We invert them for 
the elastic properties of the sample via a global search of the parameter space which allows us to perform a complete uncertainty and resolution analysis, but the computational cost is high and 
increases quickly with the number of model parameters. Therefore it is practical only for defining the seismic properties of media with a limited number of degrees of freedom, such as layered 
structures. 

Forward modelling & Dispersion analysis 
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