

Swiss Federal Institute of Technology Zurich

Towards Efficient Global Wave Propagation in 3D Media Using Scattering Integrals

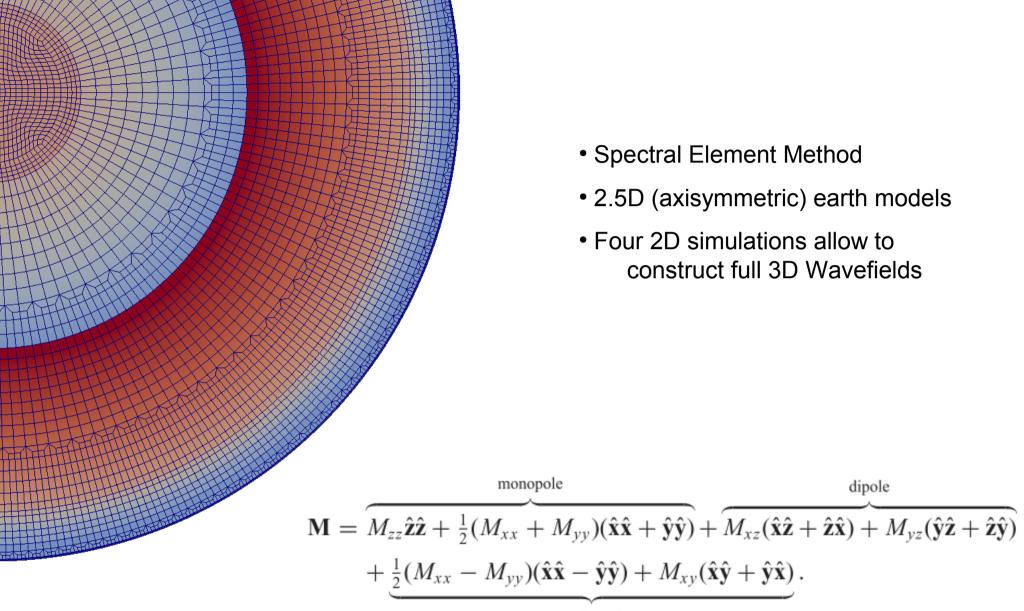
Third QUEST Workshop - Tatranska Lomnica

Martin van Driel⁽¹⁾

Tarje Nissen-Meyer⁽¹⁾, Alexey Kuvshinov⁽¹⁾, David Al-Attar⁽²⁾

⁽¹⁾ ETH Zurich, ⁽²⁾ University of Oxford

AXISEM

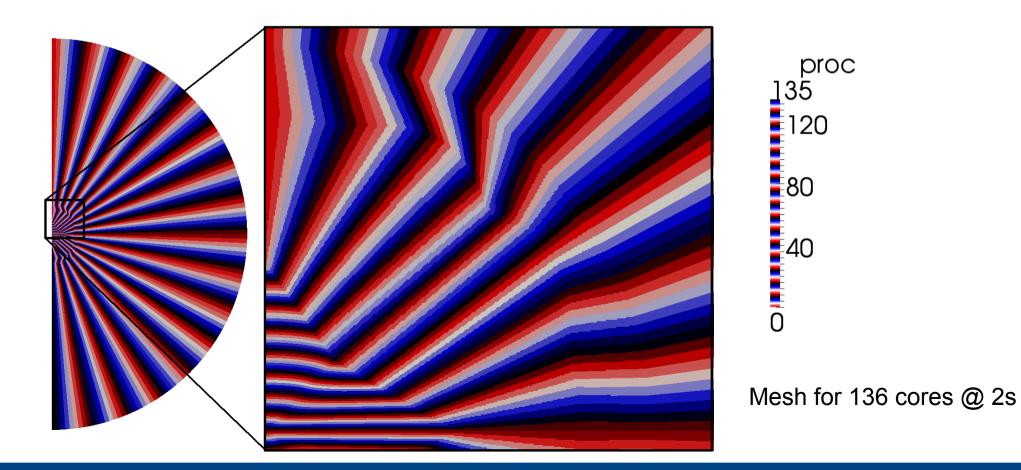


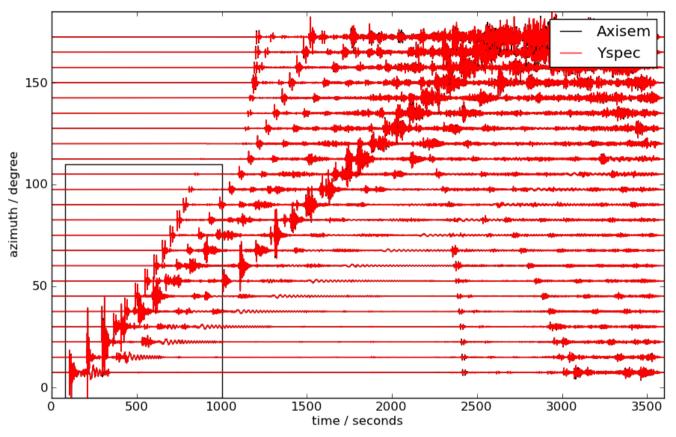
quadrupole

Nissen-Meyer et al (2007 & 2008)

Recent Developments:

- Full Anisotropy (21 independent coefficients but still 2.5D!)
- Parallelization for more than 16 processes

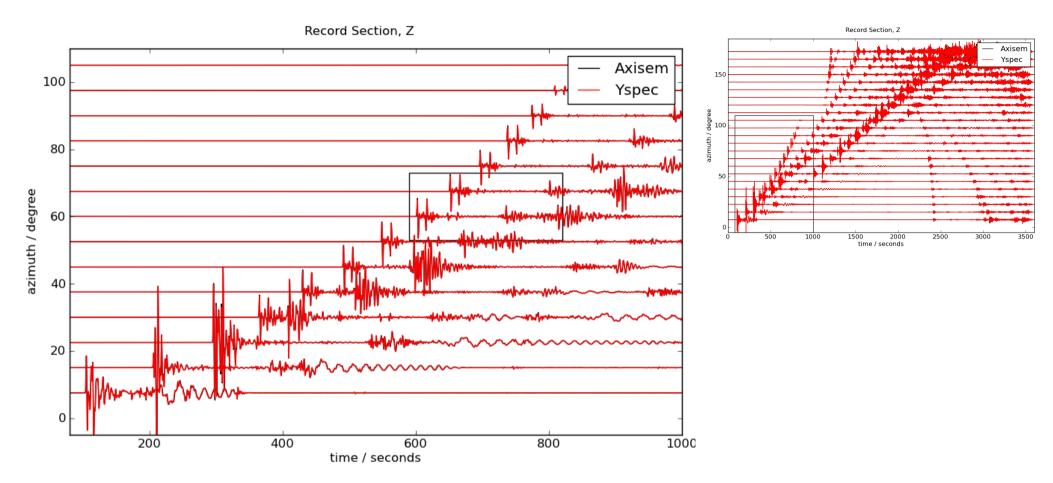




- Explosive source
- Halfduration 2s, low pass filter at 2s
- PREM (anisotropic)
- AXISEM: 136 cores (~ 8h runtime)

Yspec:

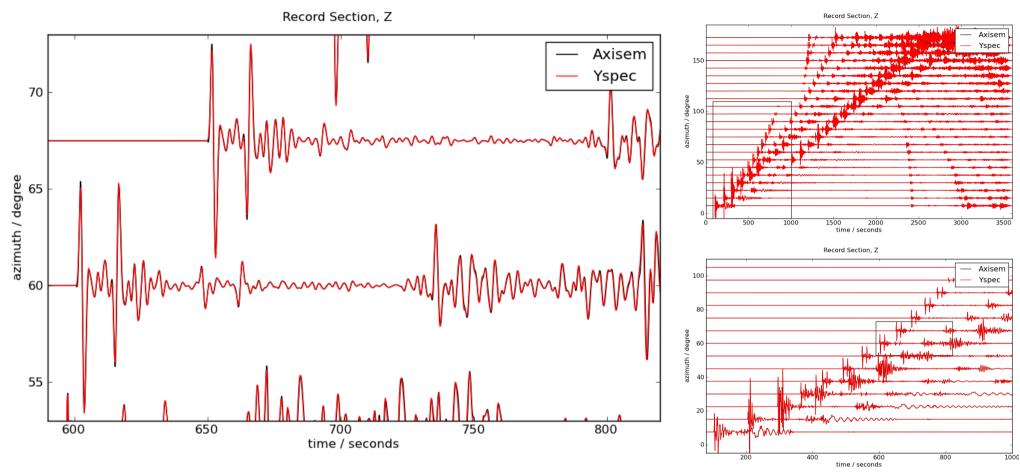
- Al-Attar & Woodhouse (2008)
- Direct radial integration method Friederich & Dalkolmo (1995)



- Explosive source
- Halfduration 2s, low pass filter at 2s
- PREM (anisotropic)
- AXISEM: 136 cores (~ 8h runtime)

Yspec:

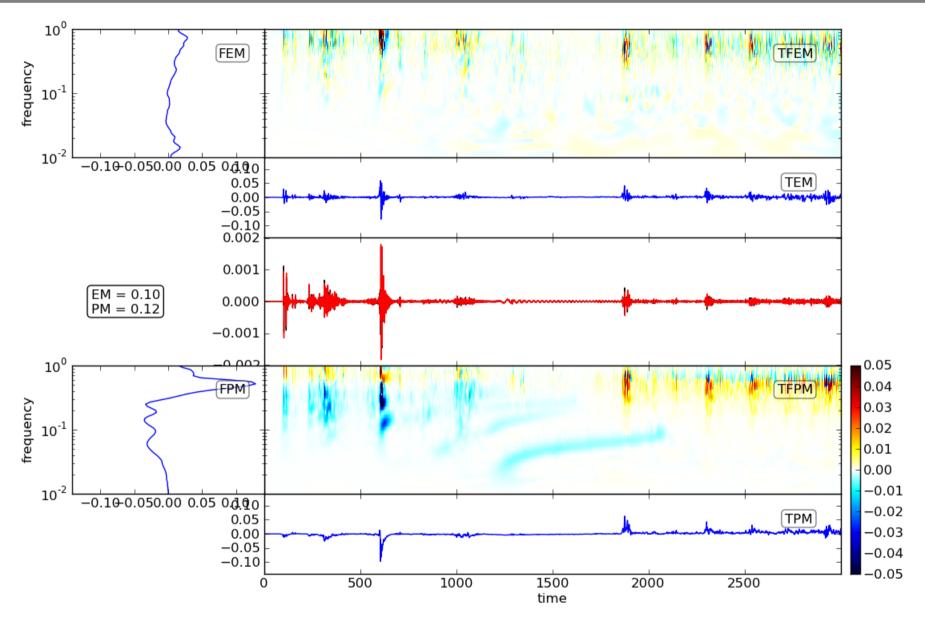
- Al-Attar and Woodhouse (2008)
- Direct radial integration method Friederich & Dalkolmo (1995)



- Explosive source
- Halfduration 2s, low pass filter at 2s
- PREM (anisotropic)
- AXISEM: 136 cores (~ 8h runtime)

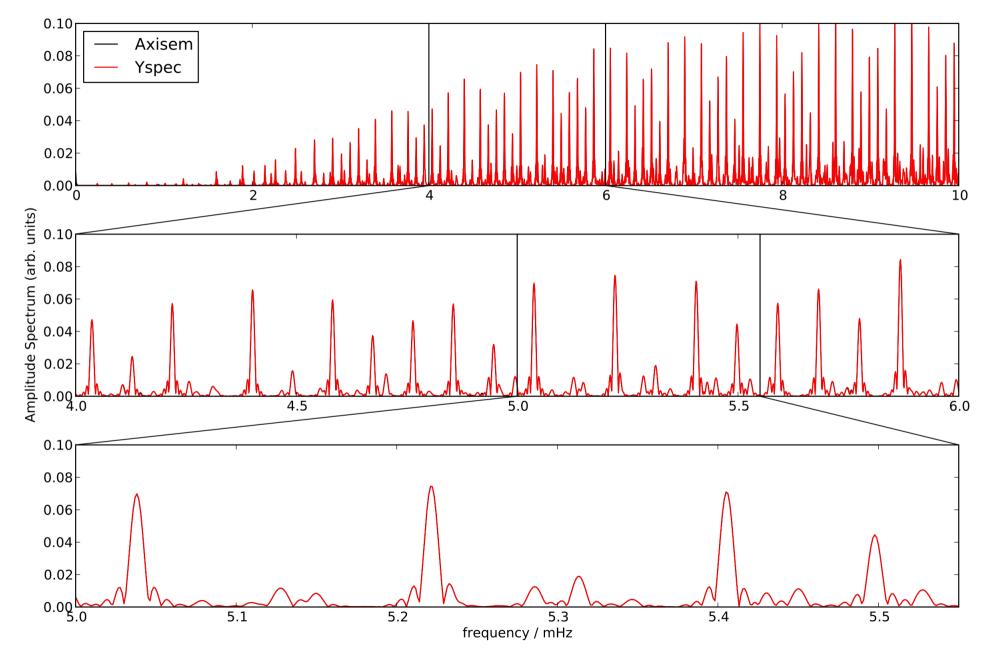
Yspec:

- Al-Attar and Woodhouse (2008)
- Direct radial integration method Friederich & Dalkolmo (1995)



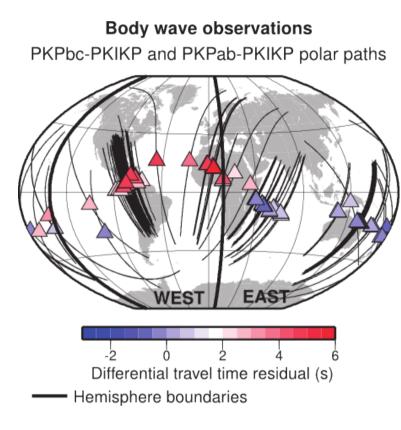
Time-frequency misfit criteria - Kristeková et al (2006 + 2009) - now also available in ObsPy (www.obspy.org)

Low Frequency Benchmark

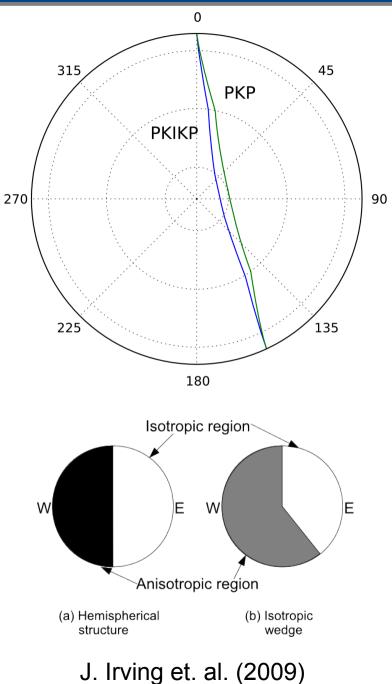


Amplitude spectrum of 48 hours of seismograms: 1.7 million timesteps

2.5D Application

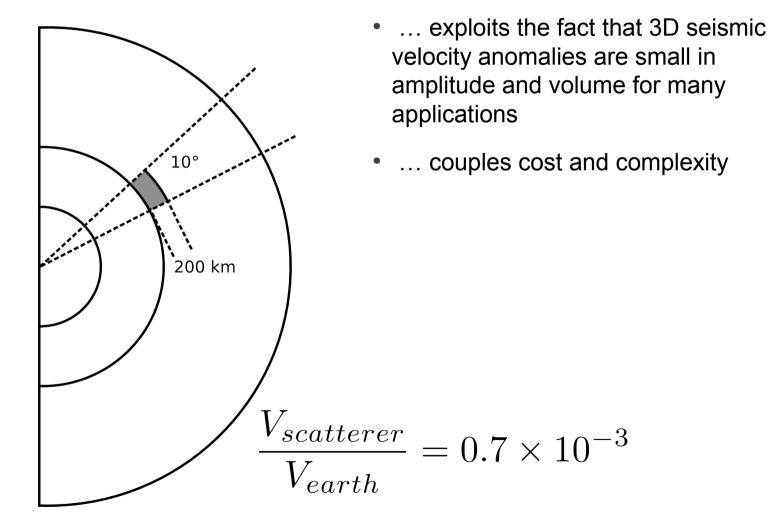


- A. Deuss et. al. (2010)
- Typically observed at 1-2s period
- Forward Solver used until now: taup



What about 3D structures?

Scattering Integrals: Motivation



Wave Propagation Solver that ...

Scattering Integrals: Theory

1D wave equation in frequency domain:

$$-\rho\omega^2 u - \partial_x(\mu\partial_x u) = f$$

Perturbed model:

$$\mu = \mu_0 + \delta\mu$$

Scattering Integrals: Theory

1D wave equation in frequency domain:

$$-\rho\omega^2 u - \partial_x(\mu\partial_x u) = f$$

Perturbed model:

$$\mu = \mu_0 + \delta\mu$$

Scattering Integral Equation:

$$u = u_0 + \hat{S}u$$

$$\hat{S}u = \int G_0(x, x')(\partial_{x'}(\delta\mu\partial_{x'}u(x')))dx'$$

Scattering Integrals: Theory

1D wave equation in frequency domain:

$$-\rho\omega^2 u - \partial_x(\mu\partial_x u) = f$$

Perturbed model:

$$\mu = \mu_0 + \delta\mu$$

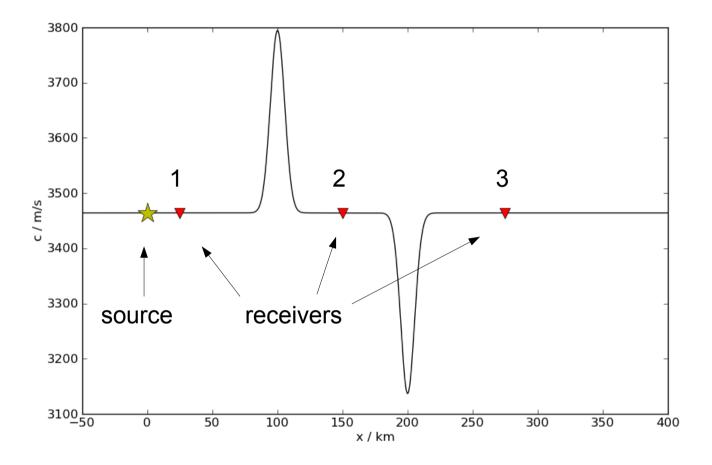
Scattering Integral Equation:

$$u = u_0 + \hat{S}u$$

$$\hat{S}u = \int G_0(x, x')(\partial_{x'}(\delta\mu\partial_{x'}u(x')))dx'$$

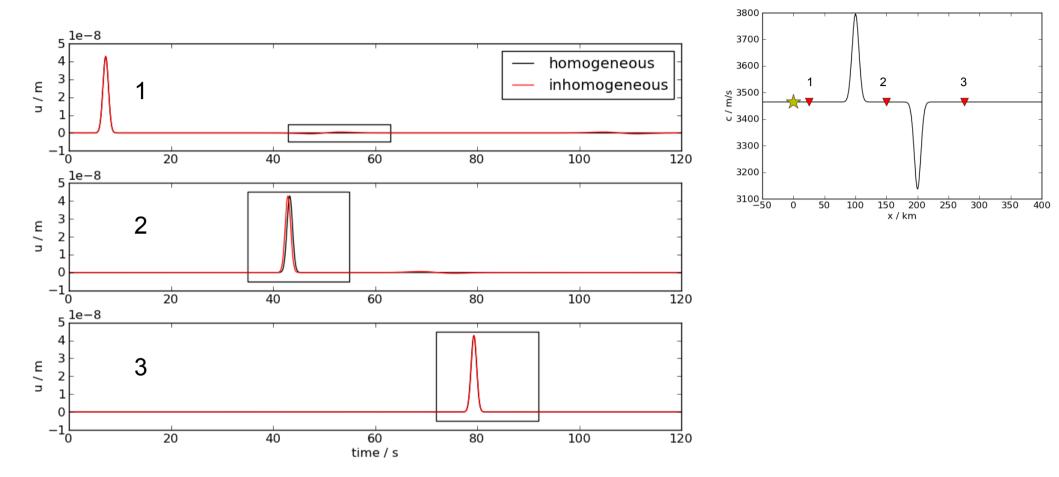
Iterative solution in Neumann Series:

$$u = \sum_{n} \hat{S}^{n} u_{0}$$



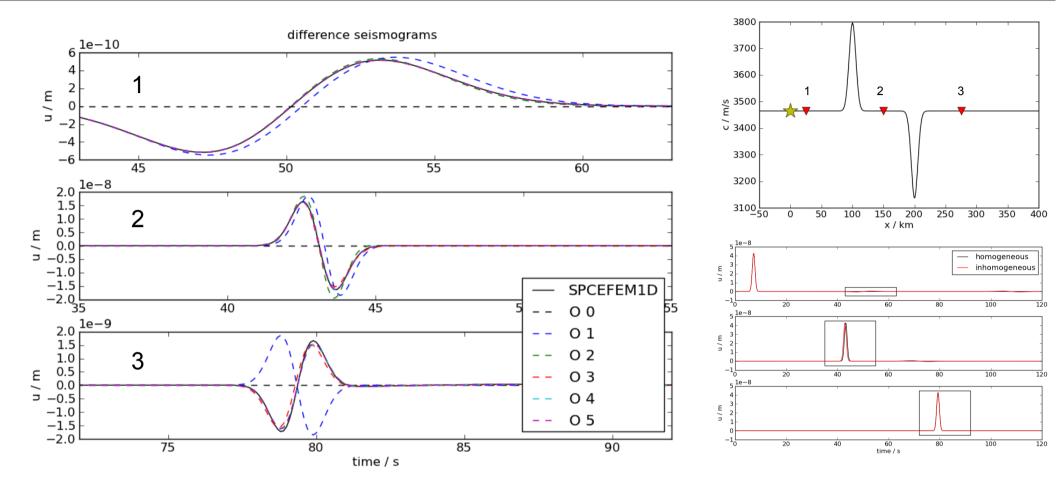
1D velocity model:

- 10% velocity perturbation
- Gaussian Scatterers (width ~ 4 wavelengths at the highest frequencies)



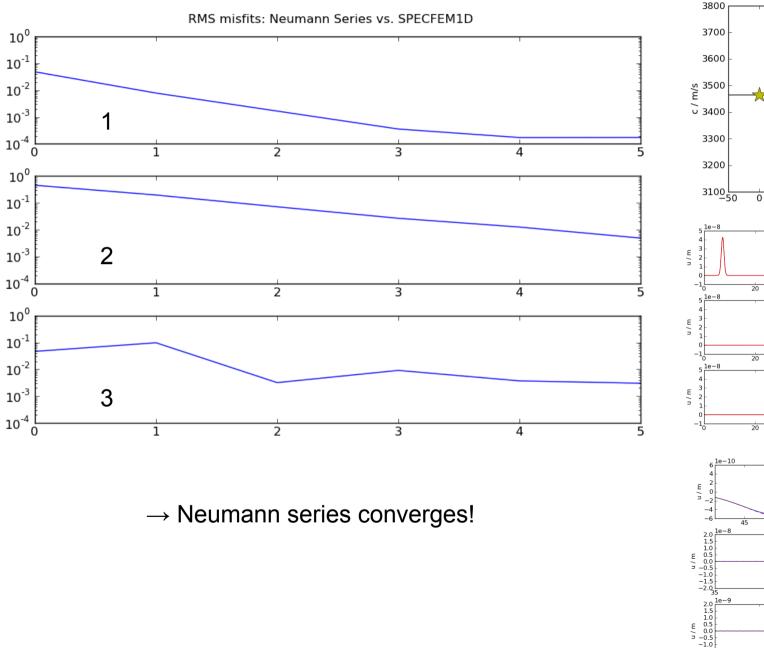
SPECFEM1D as reference and for computation of Green's functions

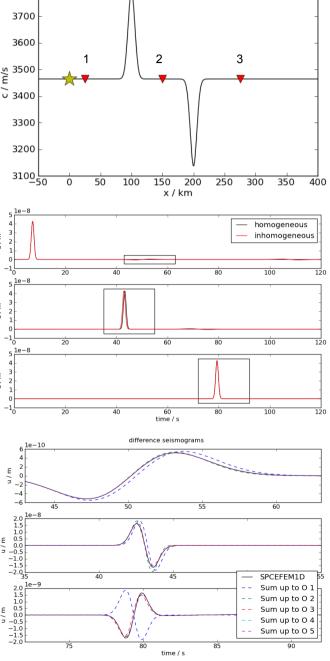
Only small differences between homogeneous and inhomogeneous seismograms

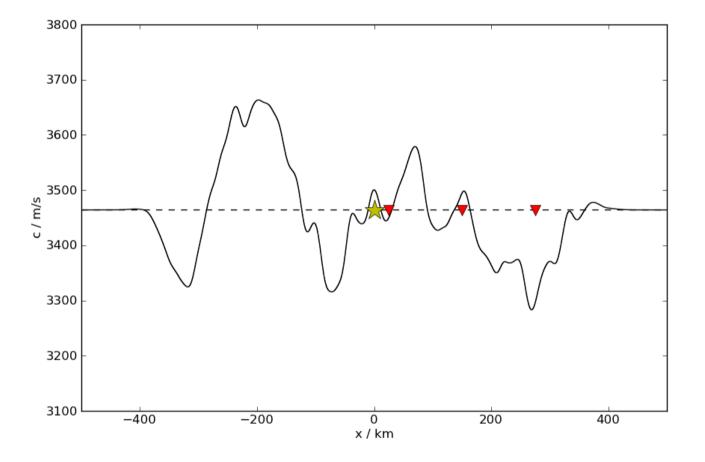


Difference seismograms:

$$\delta u_k = \sum_{n=0}^k \hat{S}^n u_0 - u_0$$

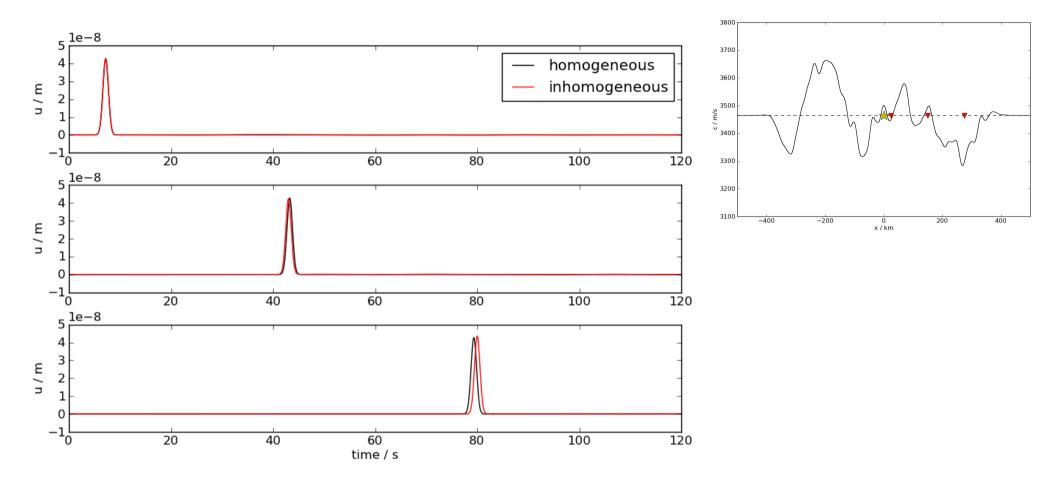




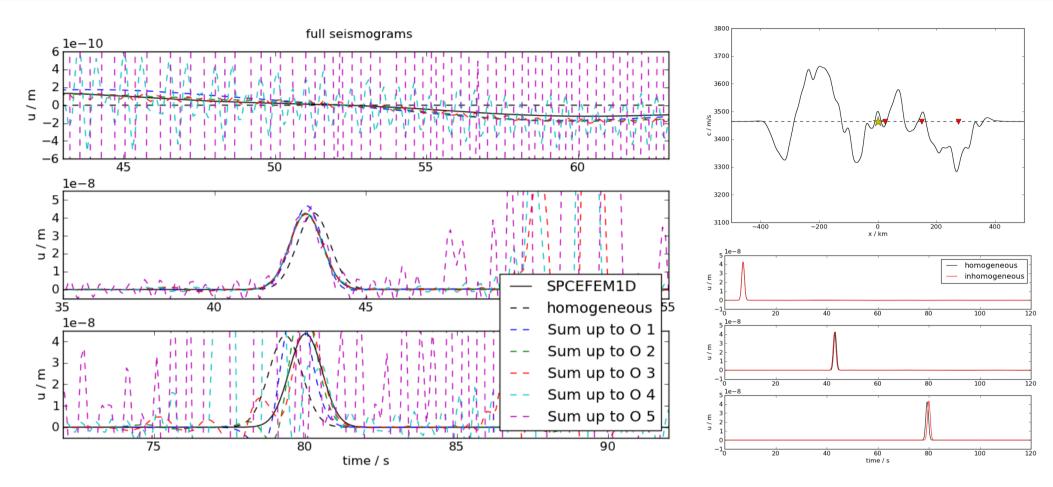


1D velocity model:

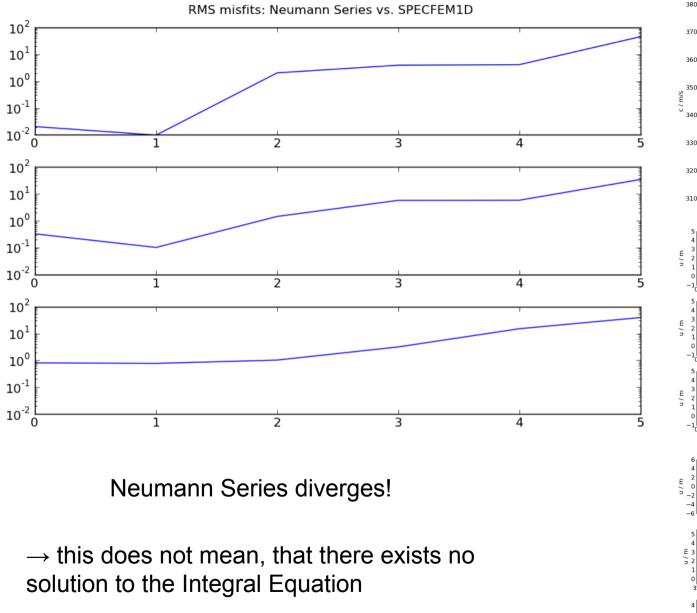
- Gaussian medium with correlation length 100km
- 5% velocity perturbation



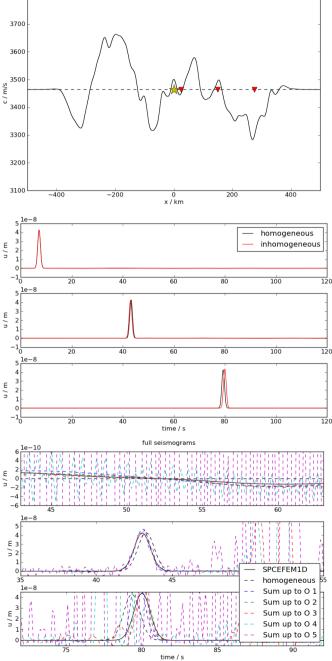
Only small differences between homogeneous and inhomogeneous seismograms



Neumann Series diverges!



 \rightarrow need for a smarter way to solve it



Iterative Dissipative Method (IDM)

For Maxwell Equations: Singer (1995) and Pankratov & Avdeyev (1995)

Energy Relation:

$$\int \left(|\sqrt{-\mathrm{Im}(\mu)}\partial_x u|^2 \right) dx = \int \mathrm{Im} \left(F \partial_x u^* \right) dx$$

Period average dissipated Energy

Period average Energy introduced by the source

Iterative Dissipative Method (IDM)

For Maxwell Equations: Singer (1995) and Pankratov & Avdeyev (1995)

Energy Relation:

$$\int \left(|\sqrt{-\mathrm{Im}(\mu)}\partial_x u|^2 \right) dx = \int \mathrm{Im} \left(F \partial_x u^* \right) dx$$

Period average dissipated Energy

Period average Energy introduced by the source

Modified Scattering Operator:

$$||\hat{K}\eta|| = ||\eta||$$

Corresponding Integral Equation:

$$\chi = \chi_0 + \hat{K}R\chi \qquad (R < 1)$$

Iterative Dissipative Method (IDM)

For Maxwell Equations: Singer (1995) and Pankratov & Avdeyev (1995)

Energy Relation:

$$\int \left(|\sqrt{-\mathrm{Im}(\mu)}\partial_x u|^2 \right) dx = \int \mathrm{Im} \left(F \partial_x u^* \right) dx$$

Period average dissipated Energy

Period average Energy introduced by the source

Modified Scattering Operator:
$$||\hat{K}\eta||=||\eta||$$

Corresponding Integral Equation:

$$\chi = \chi_0 + \hat{K}R\chi \qquad (R < 1)$$

Unconditionally convergent Neumann Series:

$$\chi = \sum_{n} (\hat{K}R)^n \chi_0$$

 \rightarrow this defines a well posed method to solve the wave equation in inhomogeneous dissipative media

Conclusions

- Successful benchmarks comparing AXISEM and Yspec for high and low frequencies
- Neumann Series for the 1D Scattering Integral Equation diverges even for small perturbations
- Basic concept of Iterative Dissipative Method for solution of the wave equation