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INTRODUCTION
The effect of anisotropy on seismic waves and on the in-

version for 3D tomographic models of velocity and anisotropy

is not negligible and is used for different applications in geo-

dynamics for both regional and global scale (Montagner, TOG,

2007).The exact determination and interpretation of anisotropy

(amplitude and orientation) are quite difficult because the ob-

served or inverted anisotropy is usually a mixture of intrinsic

and artificial anisotropies, which may partly hide the true prop-

erties of the medium. The artificial anisotropy is due to two rea-

sons: first of all, to the the fact that seismic waves do not see

the real details of medium but a "filtered" (and imperfect) ver-

sion of the earth model and second of all, to the inversion tech-

nique. Our objective is to seperate the intrinsic and artificial

anisotropy.

ARTIFICIAL ANISOTROPY (I)
It is shown that an isotropic medium with seismic

discontinuities (such as Mohorovicic discontinuity, LAB,
220km, 410km, or 660km) will be "seen" as a transversely
isotropic medium with a vertical symmetry axis (VTI). Backus
(1962) provided the formulae to calculate such effective elastic
parameters for the 1-D horizontally layered isotropic medium.
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M1 is the elastic tensor for a 1-D isotropic model, matrix
M2 is what seismic waves "see" from M1 and corresponds
to an anisotropic model. From matrix M2,we get anisotropy
parameter ξ=N/L=〈µ〉〈1/µ〉 which is actually the artifical
seismic anisotropy.

We try to estimate the amplitude of artificial radial anisotropy
associated with "filtering" effect which denoted as ξerrfilter , and
ξerrfilter=ξ − 1.

Suppose we have a periodic, isotropic, two layered (PITL)
model: a medium periodic in the vertical direction and
consisting of alternating isotropic layers of thicknesses h1, h2,
having constant Lame parameters λ1, µ1, and λ2, µ2, and
constant densities ρ1, ρ2 (Backus, 1962).

Define the dimensionless parameter θ= µ
λ+2µ which is

the square of the ratio of shear velocity to compressional
velocity, the fraction p1= h1

h1+h2
, and the fraction p2= h2

h1+h2
for the PITL model, then its effective anisotropic parameter:
ξ=(p1µ1+p2µ2)(p1µ−1

1 +p2µ−1
2 ). Furthermore, define the

ratio of the shear modulus α=µ2/µ1 of the PITL model, then
ξ=(1+(α-1) p1)(α-(α-1)p1)/α.
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Figure 1: The effective anisotropic parameter ξ of the PITL
model under different range of α: α ∈ [1/2, 2], α ∈ [1/3, 3]
and α ∈ [1/4, 4].

INVERSION METHOD
By Rayleigh’s principle (Smith and Dahlen, 1973), we have

δ(d) = d− d0 = g(p)− g(p0) =

∫ R

0

∑
p

(
∂g

∂p
.δp(r))

and its linearization form is g(p)−g(p0) = G(p−p0). Taran-
tola and Valette (1982) use the least square method to minimize
the cost function F as

F = (d−Gp)TC−1
d (d−Gp) + (p− p0)TC−1

p (p− p0)

where d0 and p0 are initial parameters, Cd and Cp are
respectively prior covariance matrices for data and parameter
spaces.

ARTIFICIAL ANISOTROPY (II)
We use a 1-D continuous isotropic 1066A model (called "REF") and its Vsv perturbed model (called "REAL") to estimate the

amplitude of artificial radial anisotropy associated with the inversion technique which denoted as ξerrinv .
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Figure 2: (Left 3) The parameters ρ,Vp and Vs for the 1-D isotropic "REF" and "REAL" models; (Right 2) The phase velocity of the
fundamental and the first four overtones of Spheroidal and Torsional modes for the "REF" and "REAL" models at different periods.
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Figure 3: (Left 2) The inverted parameters Vsv and ξ for the 1-D isotropic 1066A model; (The middle) The value of the cost
function at different iteration steps; (Right 2) Differences of phase velocity of the fundamental Spheroidal and Torsional modes

between the REF model and REAL model, the inverted model and REF model.

INVERSION OF PHASE VELOCITY DATA OF SURFACE WAVE
We generate a 1-D anisotropic PREM model (Diziewonski and Anderson, 1981), use its phase velocity of both fundamental and

overtones of Spheroidal and Torsional modes to do inversion and try to retrive the real anisotropy.
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Figure 4: (Left 3) The parameters ρ, Vsv and ξ for the 1-D isotropic reference and anisotropic real PREM models; (Right 2) The
phase velocity of the fundamental and the first four overtones of Spheroidal and Torsional modes for the "REF" and "REAL" models

at different periods.
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Figure 5: (Left 2) The inverted parameters Vsv and ξ for the 1-D anisotropic PREM model; (The middle) The values of cost
function at different iteration steps; (Right 2) Differences of phase velocity of the fundamental Spheroidal and Torsional modes

between the REF and REAL model, the inverted and REF model.

INVERSION METHOD
The procedure of inversion can be summarized as:

• Forward problem
– To compute the phase velocity VR(T ) =
g
1
(p), VL(T ) = g

2
(p) of the spheroidal and

torsional modes (n ∈ [0, 4]) of the reference
and the real models at different periods T (p
are the parameters of the models such as den-
sity ρ,A = ρV 2

PH ,C = ρV 2
PV , L = ρV 2

SV ,
N = ρV 2

SH , F = η/(A − 2L), subscript
R refers to the Rayleigh wave, L refers to the
Love wave and T ∈ [35, 300] s)

– To compute the partial derivatives of the eigen-
period 0Tl with respect to parameters p (ρ,
A, C, L, N, F) for the reference model, then
(p/T )(∂T )/(∂p) are converted to phase ve-
locity partial derivatives by using p

V ( ∂V∂p )T =

−VU
p
T ( ∂T∂p )k (V is the phase velocity andU is

the group velocity)

• Inversion at depth

We use an iterative quasi-Newton method together
with the generalized minimal residual (GMRES)
method to solve the last inverse problem in a least
square sense.

CONCLUSION

� The "filtering effect" is explored through analytical solu-

tion, and its corresponding amplitude of artifical anisotropy

ξerrfilter can be reached to a large amount (eg. 56%).

� The amplitude of artificial anisotropy of our inversion

technique ξerrinv is about 1% when tested by the 1-D continu-

ous 1066A isotropic model.

� The inverted results of the 1-D anisotropic PREM model

show that we can retrieve the intrinsic anisotropy through

phase velocity data of surface wave.

� Actual seismic data for the 3D problem is left to the fu-

ture for demonstrating the separation of intrinsic and artificial

anisotropy.


