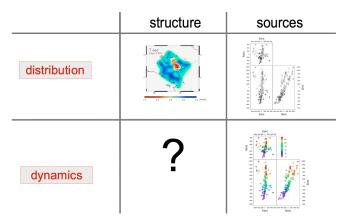
Listen to the Noise: understanding the message of ambient vibrations

Christoph Sens-Schönfelder, Eraldo Pomponi, Tom Richter

GeoForschungsZentrum Potsdam

May 20, 2013



Seismological Investigations

	structure	sources
distribution	T SECULATION OF THE SECURATION OF THE SECULATION	
dynamics	?	The state of the s

Seismological Investigations

Why is there so little activity related to dynamics of Earth's material?

Monitoring of Earth's properties

Earth's material is not stationary!

major difficulties

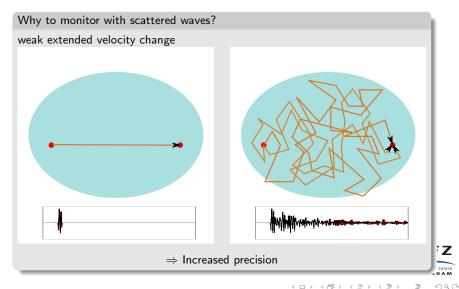
- Impulsive sources are badly distributed in space and time
 - ⇒ listen to ambient noise
- temporal variations are very weak
 - well below the spatial variations
 - usually below the error of spatial estimates
 - $\Rightarrow\,$ understand the complete noise correlation, including its coda

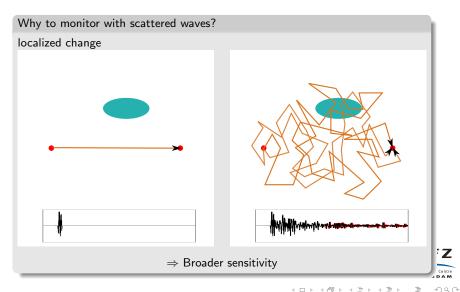
Contents

1 Introduction to monitoring with scattered waves

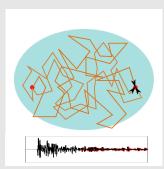
2 Long term velocity changes at Piton de la Fournaise

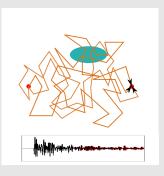
3 Coseismic and seasonal variations in northern Chile


Contents


1 Introduction to monitoring with scattered waves

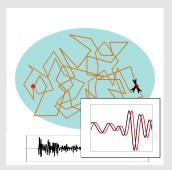
2 Long term velocity changes at Piton de la Fournaise


3 Coseismic and seasonal variations in northern Chile

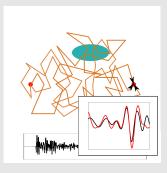


Different observables weak extended velocity change

⇒ time shift of coda phases (Pacheco and Snieder, 2005)

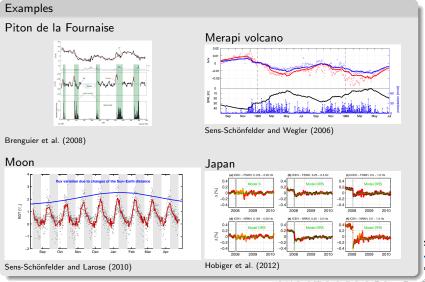

localized impeadance change

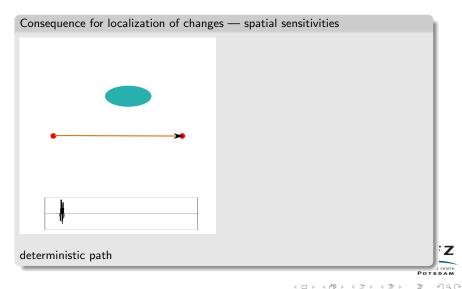
⇒ decorrelation of coda phases (Larose et al., 2010)

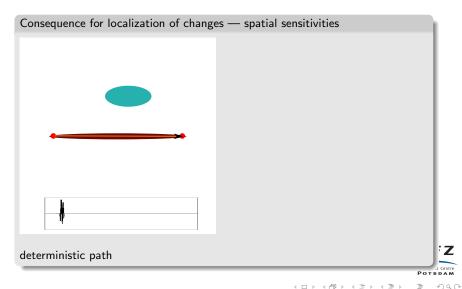


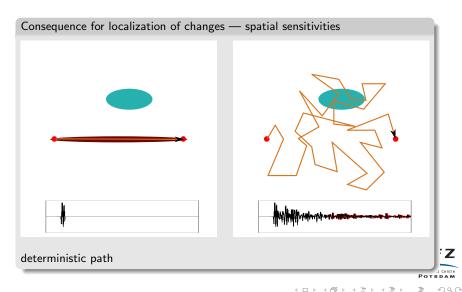
Different observables weak extended velocity change

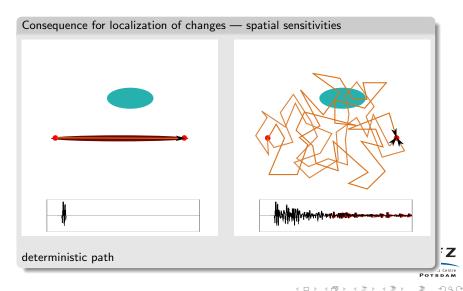
⇒ time shift of coda phases (Pacheco and Snieder, 2005)

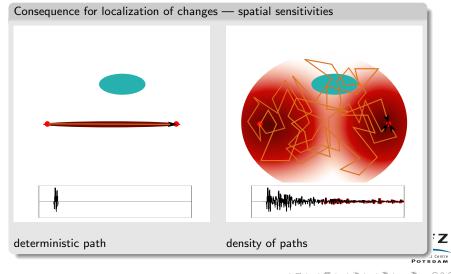

localized impeadance change

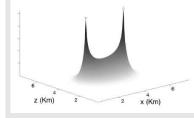



⇒ decorrelation of coda phases (Larose et al., 2010)







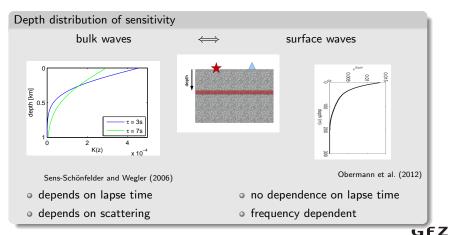


Spatial Sensitivities of scattered bulk waves

Acoustic scattering

sensitivity $K_{\mathbf{s},\mathbf{r}}(\mathbf{x},t)$: probability of a random walker starting at $(\mathbf{s},t'=0)$ and arriving at $(\mathbf{r},t'=t)$ to encounter \mathbf{x} on the way.

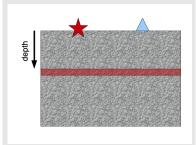
$$K_{\mathbf{s},\mathbf{r}}(\mathbf{x},t) = \frac{\int\limits_0^t g(\mathbf{s},\mathbf{x},t-t')g(\mathbf{x},\mathbf{r},t')dt'}{g(\mathbf{s},\mathbf{r},t)}$$

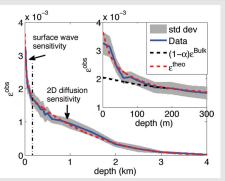

 $g(\mathbf{a},\mathbf{b},t)$: probability of a random walker starting at \mathbf{a} to be at \mathbf{b} at time t

Pacheco and Snieder (2005); Larose et al. (2010)

 \Rightarrow details depend on g but always strong peaks at stations

Helmholtz Centre Potsbam


Sensitivity in the presence of the free surface

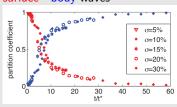


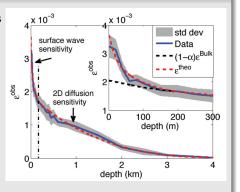
Sensitivity in the presence of the free surface

Combined effect of surface and bulk waves

coda waves in numerical simulations (Obermann et al., 2012)

- transition from surface to bulk wave sensitivity with increasing lapse time
- ⇒ allows to infer the depth of the perturbation




Sensitivity in the presence of the free surface

Combined effect of surface and bulk waves

coda waves in numerical simulations (Obermann et al., 2012)

surface - body waves

- transition from surface to bulk wave sensitivity with increasing lapse time
- ⇒ allows to infer the depth of the perturbation

Contents


1 Introduction to monitoring with scattered waves

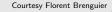
2 Long term velocity changes at Piton de la Fournaise

3 Coseismic and seasonal variations in northern Chile

Piton de la Fournaise

Piton de la Fournaise

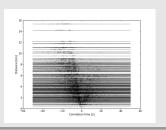
Data


UNDERVOLC

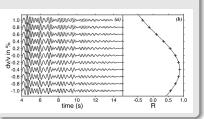
(UNDERstanding VOLCanic processes, an international project led by IPGP)
15 stations

Observatoire Volcanologique du Piton de la Fournaise 6 stations

21 broadband stations



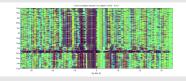
Data Processing


Noise correlation

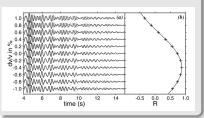
- 1 hour pieces, spectral whitening,1-bit, 24 hour stacking
- three diagonal components of the GT

Monitoring

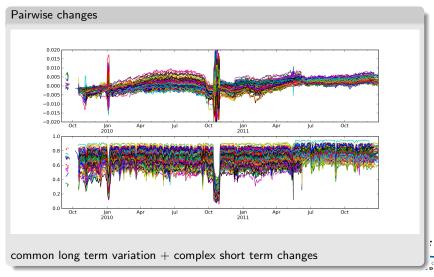
- estimation of velocity change
- averaging of different GT results
- three days running average



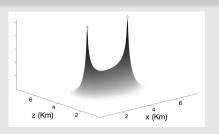
Data Processing


Noise correlation

- 1 hour pieces, spectral whitening,1-bit, 24 hour stacking
- three diagonal components of the GT


Monitoring

- estimation of velocity change
- averaging of different GT results
- three days running average


Sensitivity kernel

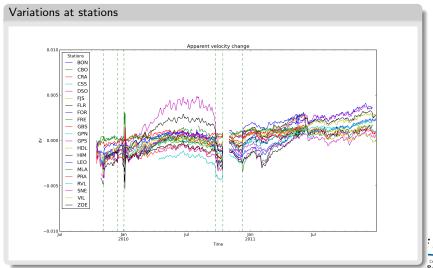
⇒ approximate the kernel with

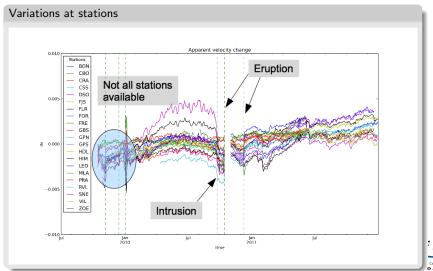
$$\delta(\mathbf{x} - \mathbf{x_s}) + \delta(\mathbf{x} - \mathbf{x_r})$$

$$\Rightarrow \Delta v_p(a,b) = \Delta v_s(a) + \Delta v_s(b)$$

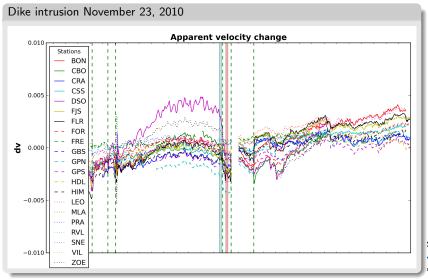
$$\Delta \mathbf{v}_p = \mathbf{G} \Delta \mathbf{v}_s$$

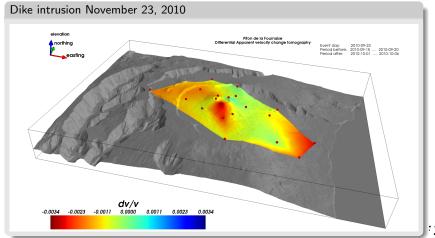
Pacheco and Snieder (2005)

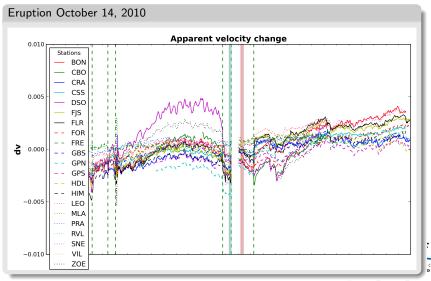

 $\Delta \mathbf{v}_p$: observed pairwise velocity changes

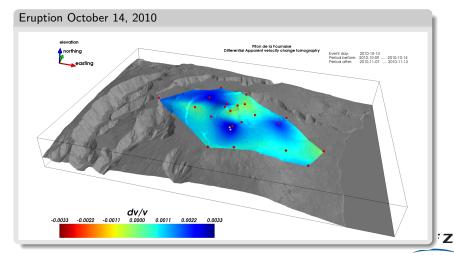

 Δv_s : modeled velocity changes at the stations

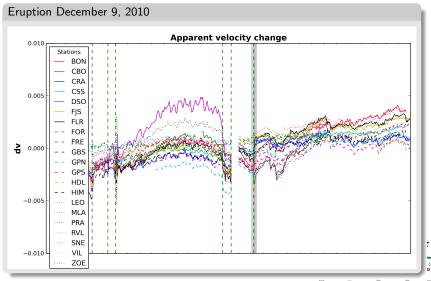
G: Sensitivity matrix containing 0 and 1 (Hobiger et al., 2012)

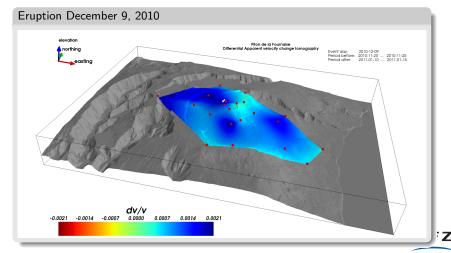










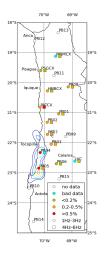


- Locations of max. changes are different and correspond to surface deformation
- Polarities of changes for the intrusion (inflation) and eruptions (deflation) are different
- \Rightarrow velocity changes reflect strain in the subsurface caused by magma movement

Contents

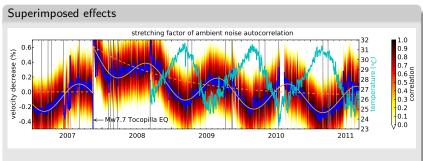
1 Introduction to monitoring with scattered waves

2 Long term velocity changes at Piton de la Fournaise


3 Coseismic and seasonal variations in northern Chile

Coseismic variations in northern Chile

Tocopilla event


- Mw = 7.7, November 14 2007
- Network of the Integrated Plate boundary Observatory Chile (IPOC)
- Variations obtained with auto-correlations
- \Rightarrow stronges velocity decrease in the fault area (0.5%)
- ⇒ exceptionally strong changes at Patache

Long term variations at Patache

- coseismic drop and long term recovery after Tocopilla event
- short term excursions after various local events
- seasonal variation caused most likely by thermal stresses
- seasonal change shallower than coseismic effect
- ⇒ exceptional sensitivity to shaking and strain related to geology (salar)

Summary

- spatial sensitivities of coda waves are different from ballistic waves
- can be described in a probabilistic sense (different approximations)
- even simple approximations can capture a significant part of the spatial variability
- ⇒ improves monitoring capabilities

References

- Brenguier, F., Shapiro, N. M., Campillo, M., Ferrazzini, V., Duputel, Z., Coutant, O., and Nercessian, A. (2008).
 Towards forecasting volcanic eruptions using seismic noise. Nat. Geosci., 1:126–130.
- Hobiger, M., Wegler, U., Shiomi, K., and Nakahara, H. (2012). Coseismic and postseismic elastic wave velocity variations caused by the 2008 Iwate-Miyagi Nairiku earthquake, Japan. *Journal of Geophysical Research*, 117(B9):1–19.
- Larose, E., Planes, T., Rossetto, V., and Margerin, L. (2010). Locating a small change in a multiple scattering environment. Appl. Phys. Lett., 96(20):204101—+.
- Obermann, A., Planés, T., Larose, E., Sens-Schönfelder, C., and Campillo, M. (2012). Depth sensitivity of seismic coda waves to velocity perturbations in an elastic heterogeneous medium. acceted for GJI, pages 1–11.
- Pacheco, C. and Snieder, R. (2005). Time-lapse travel time change of multiply scattered acoustic waves. J. Acoust. Soc. Am., 118:1300–1310.
- Sens-Schönfelder, C. and Larose, E. (2010). Lunar noise correlation, imaging and monitoring. Earthquake Science, 23(5):519–530.
- Sens-Schönfelder, C. and Wegler, U. (2006). Passive image interferometry and seasonal variations of seismic velocities at Merapi Volcano, Indonesia. *Geophys. Res. Lett.*, 33:L21302.

