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Our research is a part of CO, capture and geological storage (CCS/

CGS) study in the Baltic Region. We have applied time-lapse 4D rock
physics and seismic numericul modelling methodology to compute synthetic i
seismograms without and with €O, injected into a deep geological structure  surveys published in the exploration report of the Eé structure and values of rock
in the Baltic Sea Region and to design basis for further CGS monitoring plan  properties estimated from empirical relations were used. Geological model was
in the region. This is an important technology to predict the seismic response  constructed for the main formations (Fig. 4) and populated with petrophysical
to the presence of CO, in the storage site, to monitor CO, plume migration properties (temperature, pressure, solid rock composition, fluid saturation, porosity,
and evolution within the reservoir, estimate reservoir integrity and support density, seismic wave velocities and quality factors). The seismic properties of the
possible leakage noftification. We selected the most prospective offshore oil-  reservoir with different saturation levels of CO, and their seismic responses were
bearing geological structure Eé suitable for trapping  computed. Results were compared with initial conditions using difference sections
of CO, in the Latvian Baltic Sea Region (Figs. 1,2,3).  and normalized root mean square (NRMS) methodology.
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measured at . ~-1000 with the estimated closing  (Shogenov et al., 2013b).
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Fig. 4. 2D geological model, applied in the seismic modelling, extrapolated from the Eé seismic
section (Fig. 3) with well E6-1/84 in the centre. Deimena Reservoir of Middle Cambrian was
split into three parts according their specific physical properties (Reservoir -1, -2 and -3)

146 m Ordovician F. + 120 m Silurian
F. (shales marlstones and limestones)

(orange) and studied Eé6 offshore structures (black) in Latvia. Red transparent circle shows location
\of the studied E6 offshore structure (maps built using ArcGis 9.2 software, Shogenov et al., 2013b)
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We set up a 2D model consisting of 10 main geological Inthe horizontal direction the reservoir was estimated to be )
layers (Fig.4). We implemented vertical heterogeneity homogeneous.Thin 10 metersblack colouredlayerbetween s s ™
within the reservoir layer and split the Middle Cambrian  Ordovician and Silurian formations is Upper Ordovician oil E g 031 200
Deimena Reservoir into three parts (Reservoir-1, -2 and -3:  reservoir. All the formations are characterized by specific e _odd _ 150
yellow, pink and brown colours in the Fig. 4, respectively).  constant rock properties (Table 1). R o P 100
Table 1. Seismic and physical properties of main rock formations shown in the model (Figure 4) = . top 2 50
Formation Lithology T P pwet | 0 B \E Vs Q. | Q 3 K o o o e e 071 Resir:t?gm \ 0
(CC) | MPa) | (kg/m’) | (%) | (mD) |(m/s)|(m/s)| " | | (Gpa) |(Gpa) —_—— ==
Sea water - 10-7 | 0.1-0.8 1030 - - 1480 0 - - - - = = 0.84
Devonian Sandstone 7-31 | 0.8-6.3 2226 15 2 2474 | 1133 | 66 | 18 | 2.9 - 0l
1.0

18 2970 1504 95 32
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Fig. 7. Difference between the synthetic baseline (0% of CO,) and the synthetic
seismic line with 5% of CO, in the saturating fluid (a) and corresponding NRMS
section (b). Seismic data are computed with the geological model of Figure 4
and seismic properties given in Table 1 and Table 2. The arrows indicate the

Deimena (Reservoir-1) Sandstone 37 19.3-9.7 | 2340 21 150 2874 | 1302 | 68 | 23 4 0.6

DeimenaiReservoir-Zi Sandstone 37 |9.7-9.8 | 2400 17 60 2813 | 1162 | 85 | 25| 3.2 5.4

Cambrian Siltstone 38-41] 10-11.2| 2324 ]0-19] 0.2-23 | 2746 | 1450 | 81 | 30 | 4.9 - . .
 Buemew T G (12 [ 25 [ [ - 50 st Dl 30— reservoi op and boftom. The signal caused by the presence of CO,
All formations except the Oil Reservoir are saturated with brine. Temperature (T) and pressure (P) of the formations top and bottom are shown e g Lo mo w0 - we w0 m o 0
(extrapolated by measured data and gradients reported for the reservoir and CGIE rock layers). p_., is the bulk density of brine saturated rock A
samples. ’P average porosity; K- average permeabilit{; V, and V, - compressional (P) and shear (S) waves velocities respectively; @, and Q. - qualit?l 5 021 co 0
factors of P- and S-waves (White’s theory from Udias, 999; Waters, 1978; Haase and Stewart, 2004) respectively; p and K - shear and bulk moduli E 0% vs 1% o
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Dry P-wave velocities (V,,,), dry bulk density (p,, ), density of rock solid To evaluate specific properties of non-reservoir layers we have 2 T _: ~ | co, o
part (p.) and porosity (@) were estimated using measured properties at IFPEN used reported active seismic data (V, ) and reported laboratory g . .-—__.__‘_"'"_.r‘ —~ 0% vs 5% -
petrophysical laboratory (Shogenov et al., 2013a) and reported data. Dry measurements of dry and wet samples (Oil reservoir), obtained from ) — ‘ .
S-wave velocities (Vg ) and in situ rock physical parameters of CO, storage the well E6-1/84, and reported measurements of more than 2000 - ==
reservoir rocks, as wet P- and S-wave velocities (V, ,and V., respectively), samples of Baltic Basin (Shogenova et al., 2001). . . . . . 07 P Mo p » 0 7 C 200
wet bulk density (p ), wet bulk modulus (K ) and shear modulus (p) were D : dst Fig. 6. Synthetic plane-wave sections with 0% (a), co. - 160
estimated by rock physics theories: i 4 e 1% (b), 5% (¢), 15% (d), 50% (e), 90% (f) of CO 0% vs 15% & 160
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Vi =2 sound in the fluid at in situ conditions within the E6 reservoir 16612 xV. —04721x V> +00671xV. —00043xV: + (I-D) and (II-E), respechvely. Panels are focusmg on ==
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Behaviour of the seismic response and its ability to visualise
a small quantities of injected CO, were explored using the

A\

of CO, (Fig. 6). Reflectors on the difference section (Fig.
7) characterized by two-way travel times lower than the

, XVII

2.2 PROPERTIES AFTER CO, SATURATION

: . plane-wave, difference and NRMS seismic sections in the reservoir are not influenced by the presence of CO, and
Vv, Estimated by White’s mesoscopic rock physics theory (White, 1975). This theory provides realistic modelled E6 structure reservoir. Arrival times and reflection  give zero signal. The presence of CO, in the reservoir
Quality factors * V, and Q as a function of porosity, dry rock properties, gas saturation, fluid viscosity, strength from the reservoir and deeper formations vary causes decrease of the P-wave velocity compared to the
Attenuation permeability and dominant frequency of the seismic pulse (Carcione et al., 2003, 2006, with continuous changes of seismic properties due to the brine saturated Deimena sandstone and a variation of the
v 2007,.2012) Ty -« TR — increasing CO, saturation. . . quality factors (Table 2). These differences in the seismic
s * Equation XII " a | b | "l d This phenomenon is due to changing of magnitude of properties determine a non-zero amplitude in the difference
. : . : . : - w\ oy, Sw of ' ' ith i ' ' ' ’
Tabel 2. Seismic properties of the Deimena Sandstone Formation of Middle Cambrian £ 3w e 2l the reflection cooefﬁment with increasing of CO, content, section for the reservoir and the reflectors located at higher
partially saturated with CO, : g o gol\Syaves already with 1% of CO, saturation. Thin interbeds within  depth. The lower part of the difference and NRMS sections
Formation Fluid saturation  |p (kg/m?)| V. (m/9)[V.(m/9)] Q. | Q. i Swo oy, EML T "‘ap.waues the Reservoir (1., 2 gnd %3) implemgnted in the model and  were affected by multiple reﬂection§ (Fig. 7, 8). DiFFergnce
S Brine (09%)+CO2 (1%) | 2341 | 2642 | 1328 | 68 | 23 | 1 | w7 Sm| T i the Oil Reservoir (Figure 4) were impossible to define on  between 1% and 15% of CO, saturation s cleraly detectible,
= Brine (95%)+CO2 (5%) | 2335 2410 | 1330 | 45 | 18 |/1 o st cO.ataten o mtaten CO satration. the seismic sections due to the relatively low frequency of  while after 15% it is difficult to monitor CO, saturation
g £|RESERVOIR-1|Brine 85%)+CO2 (15%)| 2325 | 2325 | 1320 | 89 | 38 | " oucsomsyy _ veootes  wiiioo  Acemate the seismic source (35 Hz), resulting in a single reflection. change. This phenomena could be explained by relatively
T2 Brine QW FCO2 G0y 2290 | 220> | 118 | 860 1 580 el 2 - £l ¢ o] However, Reservoir-2 was reflected (as one reflection) stable V, and attenuation values in reservoir rocks after
; Brine (10%)+CO2 (90%)| 2250 | 2310 | 1328 | 97472 [43007) | .~ v, 8 i d detectibl o ol t’ fror intact Auid sattrat f 15% of CO. (Fig. 5 b, d)
:ES c Brine (99%)+CO2 (1%) 2400 2554 1185 85 25 1 B 200 gm Fooo G .E;VEVES an erecripbpie onrtne p ane-wave secrions a er|n|eC ion ula sarurarion o oO 2 go 7 .
O £ Brine (95%)+CO2 (5%) | 2397 | 2240 | 1194 | 41 | 16 | | bm\ g 8 o 8| {p.waves
= Z|RESERVOIR-2 [Brine (85%)+CO2 (15%)| 2390 2114 | 1180 | 72 | 30 | A & 2V R >\ ¥
T S Brine (50%)+CO2 (50%)| 2362 | 2055 | 1170 | 642 |29 | | et F ) T— NN
2 g Brine 100/0 +COZ 900/0 2330 2057 1180 68600 30070 J Gc%i;;hﬁrﬁat?;nt nﬂgzgtafa;c?n: u'??é?l‘;iil?aiiz; aﬁaﬂii;hfrit?c?n1
2 T oukcensty  Veoces  ieadae  Atenuaton The syntheticplane-wave and difference sectionsclearly multiples. Our study shows effectiveness of seismic
g Ny L@ = O . | 9 indicate the presence of CO, in the reservoir Formation method to monitor the presence of CO, in the Eé Baltic
a | 5. oo AU 38 oob S e in the E6 offshore structure for various saturation Sea offshore structure already from the first stages of
] 3 g ) s 8.l levels. Nevertheless, NRMS, which is one of the best the injection (1% of reservoir fluid saturation). This
] 3 I 1 ol \p- methods suited for time-lapse seismic analysis, is study is important for developing an optimal seismic
Fig. 5. Estimated bulk density (a), P- and S-wave velocities (V, and V, respecttively) (b), 720 I E‘mk NG \ ffected by th P f cal Y313, d yi' mp | o h fvd' F:J g P
acoustic impedance (¢) and attenuation (d) of the Deimena sandstones vs CO, saturation "0 groroeor "o roigauii o ororvisii %o rostioi agirecre y thé presenceé or numerical noiseé dn monitoring plan in tné studied dred.
, saturation . saturation , saturation CO, saturation

for different reservoir sub-layers. Brine and CO, are the saturating fluids
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