

Investigation of Apparent Seismic Velocity Changes Related to Microseism **Noise Source Distribution**

Meike F. Volk, Christopher J. Bean, and Ivan Lokmer

Seismology Lab., Geophysics Group, School of Geological Sciences, University College Dublin

EUROPEAN REGIONA

HEA

Higher Education Authority

meike.volk@ucdconnect.ie, chris.bean@ucd.ie, ivan.lokmer@ucd.ie

1.Project Aims

- Using background seismic noise to measure velocity changes.
- Distinguish between apparent velocity changes caused by noise source variablity and real velocity changes caused by stress changes.
- Estimation of the impact of the noise source distribution on the recovered Green's function.

5.Synthetic test

- Synthetic data can be used to constrain the performance of the analysis technique.
- The amount of apparent velocity changes can be assessed.

6.IRELAND - CROSS CORRELATIONS

- The cross-correlations are computed with data from the Donegal Array (Fig.1).
- The data is corrected for the instrument response.

2. Measuring Velocity Changes

- Secondary microseism noise is generated by the interaction of standing ocean waves with the seafloor.
- Correlations of ambient noise are typically used for Green's function retrieval between a pair of stations.
- Green's functions are often used to monitor variations in seismic wave velocity.

3.Ireland - Test Area

- Good location to study apparent velocity changes
 - Tectonically quiet.
 - Close to dominant noise sources in the North East Atlantic.

Figure 3: Array geometry for the calculation of synthetic data. Points are sources, red triangles are receivers. The non-uniform distributions are calculated according to the results in Fig. 2.

- Synthetic seismic data are calculated in an unbounded infinite, homogeneous medium (S wave velocity of 3333 $\frac{m}{s}$).
- Source time function is a Ricker wavelet (convolved with white noise) with vertical forcing, the z-component of the data is used for the following calculations (Fig.4).

Figure 5: Cross correlation of different pairs of stations of the Donegal array (Fig.1) plotted over interstation distance.

• To visually improve Figure 5 the crosscorrelations are replotted in separate plots with respect to the direction of the interstation line of the pairs.

Seismic Network in Ireland

Figure 1: Seismic network deployed in Ireland; the blue and red stations are operated by UCD. The pink stations are deployed by the Dublin Institute for Advanced Studies (DIAS).

4.IRELAND - SOURCE DISTRIBUTION

• Theoretically background noise sources for

Figure 4: Cross correlations of rec 1 with each other receiver plotted over relative receiver distance for all 4 source distributions (Fig. 3).

uniform	distr 1	distr 2	distr 3
$3333 \frac{m}{s}$	$3590 \frac{m}{s}$	$3120 \frac{m}{s}$	$3324 \frac{m}{s}$

Table 1: Apparent velocity calculated from the lag times of the cross correlations in Fig. 4.

• The non-uniformity of sources may lead to apparent changes in Green's functions (Fig. 4). This could lead to a misinterpretation of temporal changes in seismic wave velocity.

8. FUTURE WORK

• The apparent velocity changes will be investigated using field data from Ireland for known temporal changes in noise source locations.

Figure 6: Cross correlations of different pairs of the Donegal array (Fig.1) sorted by the orientation of the interstation distance plotted over interstation distance for three different directions.

• The analysis of the cross-correlations sorted by 3 different directions lead to an estimated source area in the West of the Donegal Array.

7. CONCLUSION

- Initial synthetic tests show the distribution of noise sources is very important.
- The wavefield is well recovered for uniformly distributed noise sources.
- Asymmetrical distributions do not allow us to properly reconstruct the seismic wave velocity.

imagery should be uniformly distributed in space but this rarely occurs in nature (Fig. 2).

Figure 2: Changes in temporal distribution of sources using fk analysis of unseperated data for 3 different days (period of 24 hours). The data is recorded at the Northern array (Fig.1) and it is filtered between 4 and 8 seconds. (courtesy of David Craig).

- The convergence of the Green's function over time will be assessed.
- The method will be applied to Pico del Teide volcano in Tenerife where we expect rapid velocity changes and the stress sensitivity will be determined.

9.ACKNOWLEDGEMENTS

The Earth and Natural Sciences Doctoral Studies Programme is funded by the Higher Education Authority (HEA) through the Programme for Research at Third Level Institutions, Cycle 5 (PRTLI-5) and is cofunded by the European Regional Development Fund (ERDF). This work has been partially funded by the Spanish research project CGL2011-29499-C02-01, EPHESTOS. Figure 2 is produced by David Craig.

- Ideally the source receiver offset is parallel to the line connecting the two receivers (Fig.4).
- The source distribution affects the amplitude and the first arrival time of the re-covered Green's function. If array data is used these changes can be used to estimate a source area.
- The velocity is correctly calculated if the source area is located on an extension of the line connecting two receivers.
- The non-uniformity of the noise sources can be seen in the real data.

10.References

- Shapiro, N.M. and M. Campillo, 2004, Emergence of broadband Rayleigh-waves from correlations of the ambient seismic noise: Geophysical Research Letters, 31, L07614-1 Ü L07614-4.
- Wapenaar et al., 2010, Tutorial on seismic interferometry: Part 1 Ű Basic principles and applications: Geophysics Vol. 75, NO.5, P.75A195 Ű 75A209.
- Sabra et al., 2005, Extracting time-domain Green's function estimates from ambient seismic noise: Geophysical Research Letters, 32, L03310-1 L03310-5.
- Roux et al., 2005, Ambient noise cross correlation in free space: Theoretical approach: J.Acoust.Soc.Am. 117 No. 1
- Campillo, M. and A. Paul, 2003, Long-Range Correlations in the Diffuse Seismic Coda, Science, 299, 547-549.