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Introduction
We invert travel times from the EHB bulletin (Engdahl et al., 1998) for the radial
P-wave velocity (VP ) structure of the Earth. We use artificial neural networks to
approximate the inverse relation, i.e. the mapping between our data and model
space. Neural networks can be viewed as non-linear filters and are very common

in pattern recognition and novelty detection. We use a Mixture Density Network
(MDN, Figure 1) to obtain marginal posterior probability density functions (pdfs) of
our model parameters, thereby acquiring full probabilistic information on the model.
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Methodology

A neural network consists of interconnected artificial neurons and can be used to
model the relationship between two sets of parameters. To find this relationship, a
neural network is trained by showing it many examples of an input vector x and the
corresponding target vector t.

After training, network performance is evaluated by presenting the network with an
independent test data set. Once the network has been trained and tested, it can be
presented with new unseen data as input. The network then produces a prediction
for the output vector of interest.

Figure 1: A Mixture Density Network (MDN), as introduced in Bishop (1995).

The solution to the general inverse problem is given by the posterior pdf

σ(m|dobs) = kρ(m)L(m|dobs) (1)

where ρ(m) is the prior model distribution and L(m|dobs) is the likelihood, which
reflects how well a model m explains the data dobs (Tarantola, 2005).

An MDN (Figure 1) can approximate an arbitrary conditional pdf, in our case
σ(m|dobs), as a linear combination of Gaussian kernels (Bishop, 1995):

p(t|x,w) =
MX

j=1

αj(x;w)φj(t|x;w) (2)

where w are the adjustable parameters in the neural network and the coefficients
αj are the relative importances of the M Gaussian kernels φj . The parametric dis-
tribution, described by αj and the means and variances of the kernels, is given by
the output z of a neural network. Network training corresponds to the minimisation
of the negative logarithm of Eq. (2) with respect to w for a training data set.

Setup
We draw 22 VP values at different spline knots and 7 discontinuity depths ran-
domly from prior distributions and construct 100,000 synthetic 1D Earth models
through spline interpolation (Figure 2). We use the TauP Toolkit (Crotwell et al.,
1999) to calculate synthetic first-arrival travel time curves for the P, PP, Pn phases
and the PKP branches. Figure 3 shows the EHB travel time data for these phases.

The travel time curves serve as the input x to the MDN and VP values
and discontinuity depths form the target values t. The MDN outputs conditional
posterior pdfs p(t|x), e.g. the 1D marginal pdf for the individual model parameters.
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Figure 2: Ten random VP models in the training set (red) and VP for ak135 (black).
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Figure 3: Travel time measurements in the EHB bulletin for 2001 to
2008 and event depths between 14 and 16 km. The data noise model
used during network training is based on the scatter in the EHB data.

Results
We use independent test patterns to verify that network predictions are accurate.
We then apply our trained networks to EHB travel times (Figure 4). The data
constrain VP well in the inner and outer core (IC, OC) and lower mantle (LM). Very
limited information is available on upper mantle structure (fifth and sixth rows) and
discontinuities (not shown). The green lines show ak135 (Kennett et al., 1995).
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Figure 4: 1D posterior (blue) and prior (red) marginal pdfs for all VP parameters
for ten observed input patterns, which were constructed from the EHB data.


