

stations 듳
 Tectonic

Kis.anun jeuopien ueneuisn

Portable broad-band stations - black

Permament
stations

- red

correlation between pairs of stations we have used stacked

言

A and B we use a
phase response
with a broader frequency response.
In the frequency domain,
water-level deconvolution:
$\mathbf{v}\left(\mathbf{x}_{\mathrm{A}}, \omega\right) \mathbf{v}^{*}\left(\mathbf{x}_{\mathrm{B}}, \omega\right)$
$\Phi(\omega)$
where
$\varphi_{\mathrm{ss}}(\omega)=\max \left[\mathbf{v}\left(\mathbf{x}_{\mathbf{B}}, \omega\right) \mathbf{v}^{*}\left(\mathbf{x}_{\mathbf{B}}, \omega\right), \mathbf{c} \max \left[\mathbf{v}\left(\mathbf{x}_{\mathbf{B}}, \omega\right) \mathbf{v}^{*}\left(\mathbf{x}_{\mathbf{B}}, \omega\right)\right]\right]$,

Forward modelling using Fast Marching Method (FMM) suitable for strong heterogeneity

Wavefront tracking
using group speed
Hierachical inversion
using a subspace
approach

from ambient noise study 1 Early results Misienun

Sedimentary thickness
distribution from GA database

Estimated temperature at 5 km
depth - elevated temperatures reduce seismic wavespeed

Map at 12.5 s period - main
influence from crustal variations
such as temperature

(s/u») Кұ!

(s/u»)

\square

