Seismic tomography explains where the
North American Cordillera came from

~ Karin Sigloch, University of Munich (LMU)
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Starting point: Pangaea, bounded by
Andean-type subduction at its western edge(?)

{200 Ma

Triassic-Jurassic

150 Ma

Late Jurassic

Torsvik et al. 2012



Since 180 Ma, North America has moved west in an
absolute sense
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Reconstructed western margin of North America over time (Ren et al. 2007).



Standard model: Pacific basin 140 Myr ago...

140 Ma (135-145)
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...and 80 Myr ago...

80 Ma (74-85)
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...and today. This scenario is constrained by marine
magnetic anomalies only.
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Vertical slab sinking beneath a migrating margin
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Contribution of seismic tomography: 3-D images
of subducted, proto-Pacific seafloor

Slabs represent
paleo-oceans and

paleo-trenches
(in some sense).

Slab distribution
IS very uneven.

Outlines of west
coast do not
match outlines of
the slabs.

TPW200.|

Sigloch & Mihalynuk 2013 Nature



Contribution of seismic tomography: 3-D images
of subducted, proto-Pacific seafloor

Number of seismograms generated by each event
635 events, 1118 stations in total
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sources (teleseismic earthquakes)

Number of events recorded by each station
1118 stations, 635 events in total
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Discussion is based on my most recent waveform inversion of teleseismic
P-waves (multi-frequency tomography, Sigloch 2011 G-cubed).



Technical advances: Finite-frequency tomography
images deeper into the mantle

P-velocity anomalies,
E-W section at 40°N:

a) from traditional, ray-
theoretical tomography

b) from finite-
frequency tomography
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Tomographic P-velocity model, rendered in 3-D

Velocity anomalies are resolved down to
1500-2000 km depth under North America.
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Seismically fast domains in the lower mantle

LHHS
| PMG
TPW200. |

- 1800

- 11000

depth in km

Sigloch et al. 2008

: 1600-1750 km depth
| HE0.5%




Slab walls under North America
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All seismically fast structure at and below 700 km depth, dVp/Vp=0.35%




Slab walls under North America
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all seismically fast structure at and below 800 km depth, dVp/Vp=0.35%
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3-D isosurface rendering of
all seismically fast structure at and below 400 km epth dVp/Vp=0.35%



Slab walls at and below 700 km depth
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Slab walls at and below 700 km depth

Definitely
Farallon!

Sigloch 2011 G-cubed




Slab walls at and below 700 km depth

Width of slab walls:

Sigloch 2011 G-cubed



How to deposit a widened, vertical slab wall: a
long-lived, stationary trench —
and a slab that folds beneath it.
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Stationary trench plus vertical sinking deposit a
vertical slab wall.

island arc terrane

|

-

Farallon Ocean —

Another Ocean NA

P S—
continent

WEST EAST

EJ 670 km

Stationary trench? Only possible if trench was intra-oceanic
(west of westward-moving North America).




Did North America override an archipelago of
island arcs during Cretaceous times?

How old are the
slab walls?

Old enough to
have originated
beneath intra-
oceanic trenches?

If so, where are
their associated
arc terranes now?
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Sigloch & Mihalynuk, 2013 Nature




70% of the North American
Cordillera is made up of
‘suspect terranes’

» Relatively young rocks (<400 Ma).
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The proto-Pacific in Jurassic/Cretaceous times?

Moores 1998: “Whimsical
tectonic map,” from Simkin

et al. 1989.

NORTH
AMERICA

Proposed an archipelago of
island arcs, based on land
geological observations.
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Stages of arc override [ __ —arcterrane

— —
continent
a: Oceanic trench active.
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sharp upward truncation of slab wall ——

c: Long after arc override.

new Andean-style margin produces ——
smeared out upper-mantle slab.
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Slab wall continues to sink vertically. >
Sigloch & Mihalynuk 2013 Nature 2000 km




Quantifying slab ages and slab sinking rates

Plate reconstruction: “Margin was here at time T.”

ontinent 0 km -

D (from tomography)

©/0 Km

1000 km—
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= Slab age, example: D = 1000 km depth = T= 100 Ma since subduction

Sinking rate = D/T = (10 + 2) mm/yr

T is also the time of predicted terrane collision and mountain building.



Before 140 Ma: Stationary oceanic trenches
acted as “terrane stations”
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Slabs already deposited at 140 Inferred terrane assemblage
Ma, based on 10 mm/yr sinking. before override of archipelago

The Mezcalera and Angayucham oceans are gradually closing. First
continent-arc collisions predicted and observed in Pacific Northwest (A1)



110 Ma: Oceanic arcs are being overridden
along much of the NA margin.
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Causes Sevier and Canadian Rocky Mountain orogenies (B2).

Prolonged override of MEZ promontory = Omenica magmatic belts.

Intermontane superterrane (purple) collapsed onto NA margin.



75 Ma: Coupled to the Farallon plate, accreted
terranes get shuffled north.

. .. .. - i -’.:; - 2
Intermittent strong coupling of terranes to Farallon plate, due to

accretion of a buoyant oceanic plateau (Shatsky Rise conjugate, B3). A
corresponding slab window is clearly imaged, explains Tarahumara
ignimbrite province (85+5 Ma, A4).

Buoyant plateau accretion also causes Laramide orogeny (B3).



55 Ma: Archipelago override complete, last
accretions along Cascadia margin.

iy

In Pacific Northwest, North Farallon trench turns continental. Accretion
of associated terranes (Siletzia, Pacific Rim).

End of northward shuffle along margin. Red Angayucham terranes now
make up interior Alaska. Intermontane/Insular superterranes now in B.C.



Conclusion
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 Tomography and plate reconstructions predict that North America
overrode a huge archipelago of island arcs between 150 and 50 Ma.

* This prediction is consistent with land geology, and causally explains
the large volumes of accreted terranes of the Cordillera, and the
mountain building far inland.



