

### 1. Motivation

#### **Global Isotropic S-velocity Models**





Although various global isotropic S-velocity models built with different parameterizations, damping schemes and datasets are amazingly consistent one another at least in the upper mantle or for low harmonic degrees (Becker and Boschi, 2002), we haven't reached such a consensus on global anisotropic models.

For example, two anisotropic models above show significant differences from each other. SAW642ANb shows faster SV (red) beneath Tibet at 100 km, which is not as strong as the model in S362ANI. On the other hand, S362ANI presents faster SV (red) along the subduction zones in western Pacific and beneath eastern Africa, which are not shown in SAW642ANb.

#### **Effect of Crust**

Ferreira et al. (2010) reported that the effect on data misfit of using different crust models shows difference of as large as 2%. On the other hand, data misfit reduction of around 1% is obtained when lateral variations in radial anisotropy are considered. This small misfit reduction is comparable to or smaller than the misfit difference due to different crustal corrections, and this may explain why it is hard to obtain robust radially anisotropic model.



# **Global Radially Anisotropic Mantle Structure from Multiple Datasets**

Sung-Joon Chang, Ana M. G. Ferreira, Jeroen E. Ritsema, Hendrik J. van Heijst, and John H. Woodhouse

## 2. Data and Approaches Used in This Study

To constrain radial anisotropy better than previous studies, we are going to incorporate as many data as possible. A computationally efficient way to do this is to adopt great-circle approximation (GCA) in our inversion, which is analogous to ray theory in body wave tomography. We have assembled phase velocity data (P) with overtones and group velocity data (G) from several published studies into an archive of 55 million measurements.

| Data (P/G)                                | Spheroidal mode                                    | Minor arc  | Major arc | Toroidal mode                                 | Minor arc  | Major arc |
|-------------------------------------------|----------------------------------------------------|------------|-----------|-----------------------------------------------|------------|-----------|
| E97 (P: Ekström et al., 1997)             | Fundamental mode (35~300s)                         | 276,812    |           | Fundamental mode (35~300s)                    | 161,568    |           |
| E11 (P: Ekström, 2011)                    | Fundamental mode (25~250s)                         | 2,548,680  |           | Fundamental mode (35~250s)                    | 661,215    |           |
| R04 (P: Ritsema et<br>al., 2004)          | Fundamental mode (37.6~374s)                       | 2,693,926  |           |                                               |            |           |
|                                           | 1 <sup>st</sup> overtone (37.5~274s)               | 223,672    |           | Fundamental made (27.6, 275a)                 | 256 574    |           |
|                                           | 2 <sup>nd</sup> overtone (37.6~365s)               | 193,919    |           | 1st overtone (37.5~200s)                      | 61 961     |           |
|                                           | 3 <sup>rd</sup> overtone (37.5~203s)               | 169,908    |           | $2^{\text{rd}}$ evertone (37.5~2008)          | 20,670     |           |
|                                           | 4 <sup>th</sup> overtone (37.5~78s)                | 129,505    |           | $2^{\text{red}}$ overtone (37.5~114S)         | 20,079     |           |
|                                           | 5 <sup>th</sup> overtone (37.5~62s)                | 68,282     |           | 3 <sup>rd</sup> overtone (37.0~788)           | 9,438      |           |
|                                           | 6 <sup>th</sup> overtone (88~132s)                 | 35         |           |                                               |            |           |
|                                           | Fundamental mode (35.1~175s)                       | 1,018,048  |           | Fundamental meda (25.4.474a)                  | 700.004    |           |
|                                           | 1 <sup>st</sup> overtone (35.1~173s)               | 864,560    |           | Fundamental mode (35.1~174S)                  | 722,804    |           |
| (D, )/iacar at                            | 2 <sup>nd</sup> overtone (35~149s)                 | 786,855    |           | $1^{\text{st}}$ overtone (35. $1 \sim 1778$ ) | 007,744    |           |
| VU8 (P: VISSer et                         | 3 <sup>rd</sup> overtone (35~88s)                  | 536,382    |           | $2^{\text{red}}$ overtone (35~115s)           | 412,152    |           |
| al., 2008)                                | 4 <sup>th</sup> overtone (35.1~62s)                | 324,848    |           | $3^{10}$ overtone (35.1~79s)                  | 241,020    |           |
|                                           | 5 <sup>th</sup> overtone (35.1~56s)                | 221,459    |           | 4 <sup>th</sup> overtone (35.1~63s)           | 120,520    |           |
|                                           | 6 <sup>th</sup> overtone (35.1~51s)                | 129,756    |           | 5 <sup>err</sup> overtone (35.1~568)          | 59,598     |           |
| RL98 (G: Ritzwoller<br>and Levshin, 1998) | Fundamental mode (16~150s)                         | 1,083,328  |           | Fundamental mode (16~100s)                    | 539,147    |           |
| R11 (P: Ritsema et<br>al., 2011)          | Fundamental mode(v, 37.6~374s)                     | 13,202,786 | 2,712,997 |                                               |            |           |
|                                           | Fundamental mode(h, 37.6~374s)                     | 3,717,227  | 428,978   |                                               |            |           |
|                                           | 1 <sup>st</sup> overtone (v, 37.5~274s, 40~)       | 991,490    | 649,581   |                                               |            |           |
|                                           | 1 <sup>st</sup> overtone (h, 37.5~274s, 78~)       | 39,901     | 24,882    |                                               |            |           |
|                                           | 2 <sup>nd</sup> overtone (v, 37.6~365s)            | 840,796    | 687,202   | Fundamental mode (37.6~375s)                  | 5,244,236  | 1,436,275 |
|                                           | 2 <sup>nd</sup> overtone (h, 37.6~326s, 88~365s)   | 96,887     | 194,607   | 1 <sup>st</sup> overtone (37.5~269s, ~382s)   | 1,594,217  | 664,977   |
|                                           | 3 <sup>rd</sup> overtone (v, 37.5~99s, ~233s)      | 723,823    | 357,529   | 2 <sup>nd</sup> overtone (37.5~151s, ~324s)   | 493,383    | 218,386   |
|                                           | 3 <sup>rd</sup> overtone (h, 56~273s, 62~324s)     | 171,253    | 294,631   | 3 <sup>rd</sup> overtone (37.6~101s, ~206s)   | 230,714    | 125,758   |
|                                           | 4 <sup>th</sup> overtone (v, 37.5~69s, ~130s)      | 474,706    | 246,553   | 4 <sup>th</sup> overtone (37.6~69s, ~151s)    | 104,108    | 96,198    |
|                                           | 4 <sup>th</sup> overtone (h, 43~149s, 47~233s)     | 381,723    | 550,806   | 5 <sup>th</sup> overtone (37.5~56s)           | 57,561     |           |
|                                           | 5 <sup>th</sup> overtone (v, 37.5~51s, 37.5~284s)  | 168,052    | 208,208   |                                               |            |           |
|                                           | 5 <sup>th</sup> overtone (h, 37.5~115s, 37.5~284s) | 484,836    | 626,806   |                                               |            |           |
|                                           | 6 <sup>th</sup> overtone (v, 78~132s)              | 0          | 13,561    |                                               |            |           |
|                                           | 6 <sup>th</sup> overtone (h, 37.6~78s, 37.6~132s)  | 415,264    | 587,934   |                                               |            |           |
| Sum                                       |                                                    | 32,978,719 | 7,584,275 |                                               | 11,551,599 | 2,541,594 |

#### **Considering Crustal Thickness Perturbation**

GCA has an advantage that exact crustal correction is possible for each cell point with the corresponding 1D model. But 3D effect such as focussing and defocussing is not taken into account. Furthermore, CRUST2.0 widely used for crustal correctoin is not accurate enough even for long period data. To consider these problems in crustal correction, we adopt crustal thickness perturbation as a model parameter, which may absorb the uncorrected crustal structure by CRUST2.0. To better constrain crustal thickness, we incorporate short period group velocity data down to 16s.

#### **Travel Time Data**

| Phase  | Number  | Component    |
|--------|---------|--------------|
| S      | 172,738 | Ť            |
| SS     | 114,270 | Т            |
| SSS    | 25,097  | Т            |
| ScS    | 8,517   | Т            |
| ScS2   | 13,590  | Т            |
| ScS3   | 8,025   | Т            |
| SKS    | 32,309  | R            |
| SKKS   | 8,839   | R            |
| sS     | 20,238  | Т            |
| sSS    | 9,770   | Т            |
| sSSS   | 2,763   | Т            |
| sScS   | 1,606   | Т            |
| sScS2  | 3,483   | Т            |
| sSKS   | 2,465   | R            |
| SSm    | 654     | T, major arc |
| SSSm   | 3,227   | T, major arc |
| SSSSm  | 1,340   | T, major arc |
| sSSm   | 50      | T, major arc |
| sSSSm  | 974     | T, major arc |
| sSSSSm | 1,003   | T, major arc |

#### Crustal thickness kernel for sSSSS



To constrain the lower mantle, we incorporate travel time data used for constructing S40RTS (Ritsema et al., 2011).

Dominant paths in individual dataset can bias inversion results, so we set a weight to each wave path by the number of similar event-station pairs to suppress biases due to dominant paths in individual data as well as to make a balance among various datasets.



| lajor arc          |  |
|--------------------|--|
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
| ,436,275           |  |
| 664,977            |  |
| 218,386<br>125 758 |  |
| 96,198             |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |





#### **Cross Sections of Isotropic Models**















### **3. Results** (Imax=20, 21 depth splines, effective # of parameters=3500) **Anisotropic Models**



#### **Crustal Thickness Perturbation** from CRUST2.0





### **4.** Conclusions

The various datasets used are highly complementary, allowing us to achieve good resolution in both isotropic and anisotropic structure throughout the mantle.

Crustal correction with CRUST2.0 is not accurate enough. Adopting crustal thickness perturbation as a model parameter can be a solution to separate uncorrected part of crust from mantle velocity structure.

Significant misfit reduction of 7~8% for surface wave data is achieved with use of crustal thickness perturbation and lateral variation of radial anisotropy in our study comparing to isotropic inversion given the same effective number of model parameters, which may imply that radial anisotropy can be constrained beyond the error range.