

Earthquake source parameters from low-frequency normal mode data using the Neighbourhood Algorithm

K. Lentas⁽¹⁾, A. M. G. Ferreira⁽¹⁾, E. Clévédé⁽²⁾

⁽¹⁾School of Environmental Sciences, University of East Anglia, Norwich, UK ⁽²⁾Institut du Globe de Physique, Paris, France

Goal and motivation

- •Large magnitude shallow earthquakes
- Tsunami excitation
- Finite character of the source
- •Uncertainties in source parameters

Goal and motivation

Park et al. (2005)

Probabilistic normal mode source inversion

Synthetic tests

Location and origin time errors

Min. misfit: 0.0000145

Synthetic tests

- Errors due to the neglecting of the finiteness of the source affect gradually the rake angle (up to 20°) with respect to rupture dimensions.
- Up to 8° error in fault geometry because of noise in data.
- Up to 150s error in rupture time because of Earth structure effect.
- Large location errors (1°) can yield large errors in rake angle (up to 14°).
- The rake angle is difficult to be constrained.
- Surprisingly the M_o - δ trade-off is relatively well resolved.

Application to real earthquakes

range

Application to real earthquakes (Sumatra 2004)

Acceptable 8.55-20.40 11.99-21.92 109.02-119.44 8.74-8.89 range

Min. misfit: 0.10344

Application to real earthquakes

Conclusions

- The neglect of finite rupture effects yields errors in rake gradually as the rupture dimensions (T_r, L) increase.
- Noise is not a significant source of errors in source parameters.
- The use of simplified 1D Earth model can lead to considerable errors in fault geometry (up to 8°) and large errors in rupture time (up to 150s) and length (up to 140km).
- Spatio-temporal location uncertainties yield considerable errors in rake angle (up to 14°) and rupture length (~190km).
- We successfully determined simultaneously the fault geometry, moment magnitude and rupture characteristics of the giant 2004 Sumatra and 2011 Tohoku earthquakes.
- Normal mode data can offer an independent way to study large seismic sources and highlight bulk rupture characteristics.

Synthetic tests

	<i>M</i> _w =9.31 (<i>T</i> _r , <i>L</i>)=(545s,1140km)	<i>M</i> _w =8.1 (<i>T</i> _r , <i>L</i>)=(90s,240km)	<i>M</i> _w =8.1 (<i>T</i> _r , <i>L</i>)=(60s,220km)	<i>M</i> _w =8.8 (<i>T</i> _r , <i>L</i>)=(230s,600km)
		Point source inv	ersion	
	SAW12D	SAW12D	SAW12D	SAW12D
$\Delta \phi(^0)$	-5.18	-0.36	0.33	-9.06
$\Delta\delta(^0)$	-0.26	2.46	-0.15	1.07
$\Delta\lambda(^0)$	-20.30	4.83	0.18	-9.28
ΔM_w	0.05	0.01	0.00	-0.02
misfit	0.05398	0.00065	0.00060	0.00876

					6							
	SAW12D	PREM	PREM									
	WN		WN									
$\Delta \phi(^0)$	-0.76	-4.20	-8.81	-0.70	2.16	1.47	2.86	-5.38	-14.33	-0.07	-1.64	-1.44
$\Delta \delta(^0)$	-1.72	-4.29	-4.45	5.73	-0.89	4.26	-0.64	-0.86	-13.08	5.19	7.76	-10.88
$\Delta\lambda(^0)$	-2.17	6.83	-8.02	7.98	-3.19	6.49	-6.97	0.11	6.50	1.29	-8.10	-3.10
ΔM_w	0.07	0.19	0.17	0.00	0.01	0.02	0.01	-0.00	-0.13	-0.09	-0.15	0.12
$\Delta T_r(s)$	0.03	84.59	84.69	-1.91	90.00	90.00	-1.44	60.00	60.00	-0.31	153.91	154.22
$\Delta L(km)$	20.32	-21.13	16.90	121.76	30.71	149.96	93.22	141.88	45.41	131.40	137.25	26.66
					6	6						
misfit	0.00002	0.01775	0.01777	0.00343	0.02256	0.02438	0.00071	0.01582	0.01990	0.00010	0.02093	0.02098
	SAW12D	PREM	PREM									
	WN		WN									
$\Delta \phi(^0)$	-7.94	-4.46	-8.11	-0.54	0.23	0.03	2.60	-3.30	0.62	-1.38	-7.35	-1.28
$\Delta \delta(^0)$	-0.15	0.49	-4.86	1.79	3.25	5.19	9.58	1.13	12.67	4.71	2.02	-1.17
$\Delta\lambda(^0)$	-25.78	-15.82	-23.06	3.89	5.56	7.54	7.83	-1.57	8.11	-3.05	-11.15	-5.00
ΔM_w	0.02	0.03	0.19	0.00	0.02	0.01	0.01	0.01	0.02	-0.07	-0.04	0.02
				6	6	6	0		0			
misfit	0.05416	0.05591	0.05609	0.02183	0.05126	0.07130	0.00669	0.02814	0.03401	0.00974	0.02604	0.02702

Error in origin time Error in latitude Error in longitude	+10 s $+0^{0} \text{W}$ $+0^{0} \text{S}$	$+0 \text{ s} +0^{0} \text{W} +1^{0} \text{S}$	$+0 \text{ s} +1^{0} \text{W} +0^{0} \text{S}$	$+0 \text{ s} +0^{0} \text{W} +1^{0} \text{N}$	+0 s $+1^{0}\text{E}$ $+0^{0}\text{S}$	+10 s $+0.60^{0}\text{W}$ $+0.23^{0}\text{N}$
	SAW12D	SAW12D	SAW12D	SAW12D	SAW12D	PREM WN
$\Delta \phi(^0) \ \Delta \delta(^0)$	-1.83 0.05	-5.52 4.34	$\begin{array}{c} 3.45 \\ 1.4 \end{array}$	5.80 - 6.30	-0.88 -3.18	9.46-2.71
$\Delta\lambda(^0)$	-2.47	-14.00	7.74	-10.58	-2.02	-4.54
$\Delta M_w \ \Delta T_r(s)$	-0.01 -7.96	-0.39 0.12	-0.07 0.23	$\begin{array}{c} 0.21 \\ 0.62 \end{array}$	0.12 -0.18	$\begin{array}{c} 0.12 \\ 70.91 \end{array}$
$\Delta L(km)$	-190.01	-196.32	6.20	-21.90	29.21	-192.97
misfit	0.00884	0.00016	0.00349	0.00030	0.00011	0.02209

		$\phi(^{o})$	$\Delta \phi(^o)$	$\delta(^{o})$	$\Delta \delta(^{o})$	$\lambda(^o)$	$\Delta\lambda(^{o})$	M_w	ΔM_w
GCMT		329.0		8.0	<u></u>	110.0	-	9.0	200
This study	GCMT location, $(h=28.6 \text{km})$	343.7	336.5 - 348.8	19.3	12.8 - 21.8	121.2	109.2 - 129.4	9.0	9.0 - 9.1
This study	GCMT location, $(h=10\text{km})$	342.5	332.8 - 345.6	17.0	16.6 - 28.5	119.3	101.7 - 120.3	9.0	8.9 - 9.0
This study	Tsai et al. (2005) Centroid location	340.1	335.0 - 341.1	10.3	10.1 - 13.8	113.4	107.0 - 116.0	9.2	9.1 – 9.2

Application to real earthquakes

		$\phi(^{o})$	$\Delta \phi(^o)$	$\delta(^{o})$	$\Delta \delta(^{o})$	$\lambda(^o)$	$\Delta\lambda(^{o})$	M_w	ΔM_w	$T_r(s)$	$\Delta T_r(s)$	L(km)	$\Delta L(km)$
1	GCMT	329.0	_	8.0	—	110.0	-	9.0	—	—	—	—	—
	This study	343.7	336.5 - 348.8	19.3	12.8 - 21.8	121.2	109.2 - 129.4	9.0	9.0 - 9.1	—	-	—	—
	This study	340.9	309.0 - 346.8	8.2	6.9 - 30.4	102.8	90.5 - 115.7	9.3	8.9 - 9.3	521.0	480.1 - 544.3	1276.8	1122.6 - 1322.5
2	GCMT	203.0	—	10.0	—	88.0		9.1	—	—	—	_	-
	This study	202.1	195.5 - 202.7	9.6	7.1 - 11.1	98.2	91.5 - 98.7	9.1	9.0 - 9.1	—	—	_	-
	This study	197.3	189.1 - 209.1	9.1	9.0 - 19.8	79.3	68.2 - 102.2	9.0	8.8 - 9.0	151.0	133.5 - 197.2	461.0	448.5 - 559.0
3	GCMT	19.0	_	18.0	-	116.0	—	8.8	-	-	—	—	—
	This study	13.6	8.6 - 20.0	14.8	12.0 - 21.9	110.5	109.0-119.4	8.8	8.7 - 8.9	—	—	-	—
4	GCMT	333.0	-	8.0	—	118.0	-	8.6	-	-	-	-	—
	This study	341.0	334.7 - 341.8	9.4	6.2 - 13.8	132.8	122.8 - 133.2	8.7	8.5 - 8.7	-	—	-	-
5	GCMT	328.0	-	9.0	—	114.0	-	8.5	-	-	-	-	—
	This study	329.6	321.1 - 333.8	8.1	7.7 - 19.3	111.7	97.6 - 116.7	8.6	8.3 - 8.6	—	_	—	-

1. Sumatra 2004

2. Tohoku 2011

3. Chile 2010

4. Sumatra 2005

5. Sumatra 2007

n

80

Rake (°)

100

0

8.9 9 9.19.29.3 M_w

0

10

20

Dip ([°])

30

200

Strike (°)

220

Best fit model: Strike = 197.32° Dip = 9.11° Rake = 79.33° Mw = 9.00 T_r = 150.95sec = 461.01km

