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1-Modelling secondary microseismic noise
2-Modelling body waves sources

3-Modelling long period noise
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Noise sources discretisation and synthetic seismogram

Theory by
Longuet-Higgins, 1950
and Hasselmann, 1963 :

Seismic noise sources:
single vertical forces
close by the ocean

surface

Synthetic seismogram by using a single vertical force:

u(r, θ, φ) = γ2l Fr vr Uk(rs) Uk(rr) Y 0
k (Θs ,Φs)Y 0

k (Θr ,Φr ) exp(iωkt)
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Modelling noise sources as vertical forces

Vertical force amplitude
(WAVEWATCH IIIR - Ardhuin et al., 2011):

F (fs , dS, dfs) = 2π
√

Fp(K ' 0, fs)× dS × dfs

where
Fp(K ' 0, fs) = ρw

2g2fsE 2(f )I(f )
is the equivalent wave-induced pressure spectrum at ocean surface.

E (f ) is the surface elevation variance of the two ocean trains.
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Eigenfunctions U0 l, U1 l, U2 l respectively at 6s:
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Amplification factor due to the bathymetry

by using normal modes in PREM model:

cn =
Un l (rr) Un l (rs)

ωn l

Un l (rr), Un l (rs) = eigenfunctions at receiver and source position;
ωn l =eigenfrequency
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Amplification factor due to the bathymetry: receiver on land

and considering the receiver on land:

cn =
Un l (rr) Un l (rs)

ωn l

Un l (rr), Un l (rs) = eigenfunctions at receiver and source position;
ωn l =eigenfrequency
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Maps of amplification factor - n=0,1,2,3 - T=6 s
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Apparent attenuation model

depth= 0− 100 km:
decreasing of all values of

QL6
↓

depth≥ 100 km:
QL6

(Durek and Ekström, 1996)
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Attenuation of Rayleigh fundamental mode (n=0)

The attenuation of Rayleigh waves:
- decreases with increasing period;
- increases with increasing water depth.
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Vertical components of noise spectra: Rayleigh waves modelling
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Vertical components of noise spectra: Rayleigh waves modelling
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Role of the overtones

The amplitude decreases with increasing the overtone number;
The differences between them become smaller with increasing
the overtone number;
The amplitude computed with the fundamental mode is
comparable with the amplitude computed with 100 modes.
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Love wave energy estimation in horizontal components

Synthetic spectra: only Rayleigh waves
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Love wave energy estimation in horizontal components

Missing Love wave energy estimation: e.g. 7 s
Power Spectral Energy (Raileigh & Love waves) ' −135 dB
It is necessary: ELove

ERayleigh
∼ 0.65

→ compatible with Nishida et al., 2008.

Gualtieri et al., 2013, GJI
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1-Modelling secondary microseismic noise
2-Modelling body waves sources:

work in progress!
3-Modelling long period noise



Modelling secondary microseisms Modelling body wave source Modelling long period noise Conclusions and prospectives

Modelling body wave sources: amplification factor
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Modelling body wave sources: amplification factor T=7s

Gualtieri et al., 2013b, to be submitted
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1-Modelling secondary microseismic noise
2-Modelling body waves sources

3-Modelling long period noise: work in progress!
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Long period noise: T=20-500 s

cn =
Un l (rr) Un l (rs)

ωn l

Un l (rr), Un l (rs) = eigenfunctions at receiver and source position;
ωn l =eigenfrequency
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Long period noise: T=20-500 s
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Modelling long period (T=20-100 s) vertical spectra by
considering interaction of infragravity waves

First computations: noise levels is too low by ∼ 80dB
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Conclusions

We model noise Rayleigh wave amplitude considering:
sources as vertical single forces;
source amplification coefficients in a realistic Earth model;
an empirical attenuation model.

We estimate missing Love wave energy on the horizontal
spectra;
We model seismic noise body wave sources;
We observe that long period noise sources are not frequency
dependent;
TO BE DONE:
modelling noise body waves, Love waves and hum.
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