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Introduction

We present a neural network based method for
point source inversion in a Bayesian framework.

We demonstrate the method by inverting co-
seismic displacement measurements provided
by real-time GPS networks. The static offset is

the remaining displacement after an earthquake
has occurred. We aim to investigate to what
extent this relatively novel observable can con-
strain point source estimates.

Our method has potential for earthquake early

warning (EEW) systems, since it can rapidly pro-
vide source parameter estimates together with
uncertainty bounds. Once a trained network is
available an inversion takes only a few millisec-
onds on a desktop computer.

Concept

Figure 1: The solution to the inverse problem is the posterior
probability distribution p(m|d = dobs) (Tarantola, 2005) —
the conditional distribution p(m|d) evaluated at the observa-
tion dobs. In the general case, this distribution is unknown.

Figure 2: However, we can find samples of the conditional
distribution p(m|d) ∝ p(m)p(d|m) given a prior distribu-
tion on the model parameters p(m), and a likelihood function
p(d|m), that is a data noise model and a forward modelling
code.

Figure 3: A mixture density network (MDN) forms a smooth,
parametric approximation of the conditional probability den-
sity based on a set of training samples. Once an observation
is available, we can evaluate this approximation and retrieve
the posterior distribution.

Training set & synthetic data

The training set is formed by 80.000 deviatoric
point sources drawn from a uniform prior distri-
bution. Synthetic static displacements are cal-
culated in a layered, isotropic, elastic medium
using a propagator matrix method developed by
O’Toole and Woodhouse (2011).

An efficient point source parametrization

Uncertainties translate to distances in param-
eter space. A meaningful parametrization is
thus of paramount importance for probabilistic
inversions. We work in the geometric moment
tensor domain introduced by Tape and Tape
(2012) with parameters as follows:

b isotropic component, 0 for deviatoric
sources (fixed)

γ non double-couple component, 0 for a
pure double couple

κ strike
σ rake
h cosine of dip
MW moment magnitude

Demonstration: The 2010 El Mayor-Cucapah Event

After training and testing the networks, we
present observations for a MW 7.2, 2010 event

in Baja California, which yields 1-D posterior
marginal distributions.
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Figure 4: The network performance is assessed using another 4000 examples — the test set. Left: Predicted mode of
the distribution vs the true value. Right: Histograms of the information gain — the distance between prior and posterior
distribution (colour coded in the left plot). A small information gain indicates that the posterior closely resembles the prior.
Not all parameters can be predicted well.
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Figure 5: Inversion results for the 2010 Mw 7.2 El Mayor-
Cucapah event. Vertical lines denote the position of other
published moment-tensor point source solutions (Melgar
et al., 2012; O’Toole et al., 2012; Wei et al., 2011). Prior
distributions are shown in green. Our uncertainty estimates
comprise most other solutions.

Figure 6: Influence of different amounts of perturbations of
the 1-D crustal Earth model on the posterior marginals. The
sensitivity with respect to the Earth model seems minimal.
Most parameters are unaffected up to unrealistically large
variations of 20%.
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Conclusions

A probabilistic neural network inversion yields re-
alistic uncertainty estimates and is able to deal
with non-unique and multi-modal mappings.
Computational demands are low, once a trained
network is available, making the method suitable
for EEW purposes.
Static displacements provide robust information

on location and magnitude and show little sensi-
tivity to the crustal model.
The flexible treatment of input data makes it
possible to perform joint inversions of different
data types, such as displacement waveforms
and strong-motion accelerograms. A potential
that still remains to be explored.


