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1. Introduction

When a large shallow earthquake happens, there will be notable surface displacements
around the focal area. The inverse problem of reconstructing the slip distribution over the
fault from irregular surface observations of dislocation is considered. For known fault geome-
try the inversion is linearand for unknown fault geometry it is non-linear. In the present study
we apply linear mixed modeling to the 2004 M6.0 Parkfield earthquake with both rectangular
partition and self parametrizing partition. This is an extension of previous work [1], where a
strong priori constraints had to be imposed on the slip-field. Moreover, we can use the full
available data and all displacement directions on the fault all which previously led to unstable
results. In the second step we apply Partition modelling[4]. Partition modelling is a statistical
method for nonlinear regression and classification. The method is an ensemble inference
approach within a Bayesian framework. Here we extend this method for source modeling.
The procedure involves a dynamic parametrization for the model which is able to adapt to
an uneven spatial distribution of the information on the model parameters contained in the
observed data.

2. Mixed Models

We can model the n × 3-dimensional
vector of observed surface displacments
δXi, δYi, δZi with a stochastic model that
relates slip of discretized fault to surface
displacement linearly as

d = Gs + ε

The measurement errors are supposed to
be independent and known σX = σY =
3mm, σZ = 10mm. The matrix elements
of G can be computed from elastostatic
greens functions for a dislocation [3]. De-
composing s into 2 dimensional fixed ef-
fects (uniform,tapered slip) and random ef-
fects (patchwise dislocations)

sk =
∑

Mk,fβf + uk, k = 1, . . . ,#patch

we obtain a linear mixed model [2]

d = Fβ + Gu + ε = g(m) + ε, F = GM

ε and u are assumed to be independent
and have distirbutions as

u ∼ N(0, λ2σ2Ω)

ε ∼ N(0, σ2Σ)

The fixed effects have flat prior. Bayesian
theorem allows computation of posterior
distirbution as

P(m|d) ∼ exp

(
||d− g(m)||2 + λ−2uTΩ−1u

−2σ2

)

The estimated field is given by the poste-
rior mode (best linear unbiased prediction
[BLUP]).

3. Estimation by BLUP and Cross-Validation for rectangular partition

Here we estimate slip distribution using (BLUP) and we do K-Fold Cross-Validation to
fix hyperparameter(λ). Results for synthetic data and Parkfield 2004 M6.0 earthquake
are shown in the following. The fault is partitioned to 200 rectangular patches, 20
and 10 along strike and dip respectively and since parkfield 2004 M6.0 mechanism of
slip is strike we have only one fixed parameter, also vertical error is big then we use
only horizental data of 14 GPS sites. The geometry of fault is 137◦ strike angle, 83◦

dip angle, length and width 40 km and 14.5 km along strike and dip respectively.
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Figure 1: Synthetic test a) Input slip distribution b) K-Fold Cross-Validation c) Inverse slip
distribution d) Surface displacements.
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Figure 2: Parkfield 2004 M6.0 a) Inverse slip distribution b) K-Fold cross-validation c) stan-
dard deviation d) Surface displacements.

4. Estimation by metropolis hastings algorithm for self parametrizing partition

In the fixed rectangular partition , green
function is fixed but in the case of
self parametrizing partition green func-
tion also is going to be changed for
any set of voronoi cells. We use flat
prior for position of voronoi cells. The
fault is divided to 64 voronoi cells.

Figure 3: Voronoi cells

algorithm of sampling

•Randomly pick one cell
– Even iteration: Randomly change the

slip value of the cell according to a
Gaussian proposal probability density
q(s

′

i|si) centred at the current value si.
– Odd iteration: Randomly change the

position of the cell nucleus according
to a 2D Gaussian proposal probability
density q(R

′

i|Ri)centred at the current
position Ri. The covariance matrix for
the 2D Gaussian function is propor-

tional to the identity matrix, with the
constant of proportionality(σc), a pa-
rameter to be chosen.

• Solve the forward problem for proposed
model

•Decide whether or not to replace or up-
date the current model with the pro-
posed model by drawing from a uniform
random variate, U, (between 0 and 1)
and using an acceptance criterion which
takes the form

p(accept) = min(1,
p(m

′|d)

p(m|d)
.
p(m|m′)
p(m

′|m)
)

Assuming symmetric proposal distribu-
tions (i.e. p(m|m′) = p(m

′|m))

p(accept) = min(1,
p(m

′|d)

p(m|d)
)

draw a value U from the Uniform(0,1)
distribution, if U < p(accept): then ac-
cept m

′
.

After sampling we do an ensambl avreag-
ing to get slip distribution for synthetic test
and Parkfield 2004 M6.0 event that the re-
sults for different parameters of σc and λ−1

are shown in following.
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Figure 4: Inverse slip distribution of synthetic test a) σc = 0.1km, λ−1 = 5 b) σc = 0.1km,
λ−1 = 15 c) σc = 0.3km, λ−1 = 10 d) σc = 0.3km, λ−1 = 15
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Figure 5: Inverse slip distribution of Parkfield 2004 M6.0 earthquake a) σc = 0.2km, λ−1 = 25
b) σc = 0.3km, λ−1 = 0 c) σc = 0.6km, λ−1 = 1 d) σc = 0.6km, λ−1 = 10
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