
Guide to building user defined models in SHaxi
by, Michael S. Thorne and Gunnar Jahnke
Last Updated: July 26, 2007

1. User modules

To incorporate a user defined model in

SHaxi we recommend adding your own

modules to the code. In this section we

show a simple example of how to do this.

The example we show will produce a

circular shaped velocity anomaly. This may

not be the most exciting example, but it is an

easy to understand example and

demonstrates the process by which more

complicated models may be built. The

figure to the right displays what the model

we will construct looks like.

My individual user modules typically consist of three main subroutines:

i) A subroutine setting model parameters.

ii) A subroutine that specifies S-wave velocity and density (and possibly Q) at each

grid point in SHaxi.

iii) A subroutine that drives the whole process, to make sure every grid point is

handled and that conversion to the correct units for SHaxi are applied.

1.1 Model Parameters

As an example, I will show the above three subroutines to create the circular velocity

anomaly. These subroutines are provided in the SHaxi source code in the module named,

mod_circle.f90.

The first subroutine simply specifies the various parameters about the anomaly I may

want to vary. Alternatively, a subroutine could be written to read these parameters in

Figure 1. Example of circular velocity
anomaly.

SHaxi – user defined models

2

from a file, but this example is the easiest solution. All this subroutine does is set aside

the parameters that I may want to change.

The parameters are shown graphically below:

Figure 2. Example parameters for circular anomaly.

!==!
!
! SETCIRCLE
!
! Set parameters for circular anomaly
!
!==!
 SUBROUTINE setcircle(Rcenter,EPcircle,Rcircle,circle_v,circle_rho)
 IMPLICIT NONE
 REAL, INTENT(OUT) :: Rcenter !Radius to center of circular anomaly (km)
 REAL, INTENT(OUT) :: EPcircle !Epicentral Distance to center of anomaly (deg)
 REAL, INTENT(OUT) :: Rcircle !Radius of circular anomaly (km)
 REAL, INTENT(OUT) :: circle_v !Vs inside circle (% difference from surrounding mantle)
 REAL, INTENT(OUT) :: circle_rho !Density inside circle (% difference from mantle)

 !Set parameters for circle - to be used by makecircle
 Rcenter = 4500.0
 EPcircle = 32.5
 Rcircle = 200.0
 circle_v = -5.0
 circle_rho = -2.0

 END SUBROUTINE setcircle

!==!

SHaxi – user defined models

3

1.2 Model driver

The next subroutine drives the process of building the model. This is the subroutine that

the main part of the SHaxi code would make a subroutine call to (called in the program

fd2_model.f90). The driving subroutine is shown below.

!==!
!
! CIRCLEDRIVER
!
! Driver routine to produce circular anomaly
!
!==!
 SUBROUTINE circledriver(rho,mu1,mu2)
 USE global, only: nx, nz, r1, theta1, r2, theta2, pi
 IMPLICIT NONE
 REAL, DIMENSION(nx,nz), INTENT(INOUT) :: rho, mu1, mu2
 REAL :: trad, ttheta, Vsin, Rhoin, Vsout, Rhoout
 INTEGER :: z, x

 CALL sh_prem

 DO z=1,nz
 DO x=1,nx

 trad = r1(x,z)/1000. !trad = radius in km
 ttheta = theta1(x,z)*(180.0/pi) !ttheta = theta in deg
 Vsin = mu1(x,z) !Vs (km/sec)
 Rhoin = rho(x,z) !Rho
 CALL makecircle(trad,ttheta,Vsin,Vsout,Rhoin,Rhoout)
 mu1(x,z) = Vsout
 rho(x,z) = Rhoout

 trad = r2(x,z)/1000.0
 ttheta = theta2(x,z)*(180.0/pi)
 Vsin = mu2(x,z)
 CALL makecircle(trad,ttheta,Vsin,Vsout,Rhoin,Rhoout)
 mu2(x,z) = Vsout

 ENDDO
 ENDDO
 rho=rho*1000. ! adjust units
 mu1=mu1*1000.
 mu2=mu2*1000.
 mu1=rho*mu1**2 ! convert vs-> mu
 mu2=rho*mu2**2 ! (vs=rho*mu^2)

 END SUBROUTINE circledriver
!==!

SHaxi – user defined models

4

This subroutine can almost be directly copied for each individual use. Before we

describe what this subroutine does we should define the global variables that are used and

are important for building models.

Important SHaxi Global Variables
Variable Description
nx The integer number of grid points (for the current rank) in the theta-

direction.
nz The integer number of grid points (for the current rank) in the radial-

direction.
r1 & r2 An array of size (nx,nz) containing the radius (units of meters) for

each grid point. r1 and r2 contain the radii for mu1 and mu2
respectively.

theta1 & theta2 An array of size (nx,nz) containing the epicentral distance (from the
source – or symmetry axis) (units of radians) to each grid point.
theta1 and theta2 contain the distance to mu1 and mu2 respectively.

rho An array of size (nx,nz) containing the density (units kg/m3) of each
grid point.

mu1 An array of size (nx,nz) containing the shear modulus (kg/m·sec) of
each grid point (on grid defined by r1, theta1).

mu2 an array of size (nx,nz) containing the shear modulus (kg/m·sec) of
each grid point (on grid defined by r2, theta2).

The first thing this subroutine does is make a call to sh_prem. This initializes each grid

point in the model to values given in the PREM model. A note of possible confusion is

that this initial step does not actually store rho, mu1, and mu2 in the units described

above, but instead temporarily holds S-wave velocity (units of km/sec) in mu1 and mu2

and holds density (units of g/cm3) in rho. This step does not have to be done if your

subroutine will fill every grid point on its own.

Next we loop through all grid points in the model making a call to the subroutine

makecircle. The makecircle subroutine takes as input the radius (in km) and theta (deg)

position, and the currently assigned S-wave velocity and density value of the current grid

point. And it spits out a modified S-wave velocity and Density to the variables Vsout and

Rhoout. Because of the staggered grid this must be done twice once for the SHaxi

SHaxi – user defined models

5

variable mu1 and again for mu2. Inside the DO loops mu1 and mu2 take on the values of

S-wave velocity (units of km/sec) as given by the sh_prem subroutine. However, mu1

and mu2 are assigned for the shear moduli, and are thus converted to such at the end of

the subroutine.

As noted, this driver subroutine can be directly copied into other user specified routines,

with just a replacement of the makecircle subroutine.

!==!
!
! CIRCLEDRIVER
!
! Driver routine to produce circular anomaly
!
!==!
 SUBROUTINE circledriver(rho,mu1,mu2)
 USE global, only: nx, nz, r1, theta1, r2, theta2, pi
 IMPLICIT NONE
 REAL, DIMENSION(nx,nz), INTENT(INOUT) :: rho, mu1, mu2
 REAL :: trad, ttheta, Vsin, Rhoin, Vsout, Rhoout
 INTEGER :: z, x

 CALL sh_prem

 DO z=1,nz
 DO x=1,nx

 trad = r1(x,z)/1000. !trad = radius in km
 ttheta = theta1(x,z)*(180.0/pi) !ttheta = theta in deg
 Vsin = mu1(x,z) !Vs (km/sec)
 Rhoin = rho(x,z) !Rho
 CALL makecircle(trad,ttheta,Vsin,Vsout,Rhoin,Rhoout)
 mu1(x,z) = Vsout
 rho(x,z) = Rhoout

 trad = r2(x,z)/1000.0
 ttheta = theta2(x,z)*(180.0/pi)
 Vsin = mu2(x,z)
 CALL makecircle(trad,ttheta,Vsin,Vsout,Rhoin,Rhoout)
 mu2(x,z) = Vsout

 ENDDO
 ENDDO
 rho=rho*1000. ! adjust units
 mu1=mu1*1000.
 mu2=mu2*1000.
 mu1=rho*mu1**2 ! convert vs-> mu
 mu2=rho*mu2**2 ! (vs=rho*mu^2)

 END SUBROUTINE circledriver
!==!

SHaxi – user defined models

6

1.3 Specifying the velocity anomaly

Creating the velocity anomaly is done simply. In the above driving routine we looped

through all grid points. Here all we do is test each grid point in the model and see if they

are within the specified radius (Rcircle). If they are we change the velocity and density,

if not we leave the velocity and density alone. The following subroutine accomplishes

this:

!===!
! MAKECIRCLE
! Subroutine that creates the circular anomaly
! r = radius of grid point (km) EXPECTS UNITS == KM!
! theta = theta of grid point (deg) EXPECTS UNITS == DEG!
! Vsin = Current Vs of grid point (km/sec)
! Vsout = Output velocity of grid point (km/sec)
! Rhoin = Current density of grid point (g/cm^3)
! Rhoout = Output density of grid point
!===!
 SUBROUTINE makecircle(r,theta,Vsin,Vsout,Rhoin,Rhoout)
 IMPLICIT NONE
 REAL, INTENT(IN) :: r, theta, Vsin, Rhoin
 REAL, INTENT(OUT) :: Vsout, Rhoout
 REAL, PARAMETER :: dtr=.01745329252222
 REAL :: x, y, xc, yc, d
 REAL :: Rcenter, EPcircle, Rcircle, circle_v, circle_rho

 CALL setcircle(Rcenter,EPcircle,Rcircle,circle_v,circle_rho)

 !Convert r,theta position to x,y
 x = r*sin(theta*dtr)
 y = r*cos(theta*dtr)

 !Find center of circle
 xc = Rcenter*sin(EPcircle*dtr)
 yc = Rcenter*cos(EPcircle*dtr)

!Calculate distance between current position and center of circle
 d = sqrt(((xc-x)**2 + (yc-y)**2))
 IF (d <= Rcircle) THEN
 Vsout = (Vsin)*(circle_v/100.0) + Vsin
 Rhoout = (Rhoin)*(circle_rho/100.0) + Rhoin
 ELSE
 Vsout = Vsin
 Rhoout = Rhoin
 ENDIF

 END SUBROUTINE makecircle
!==!

SHaxi – user defined models

7

II. Incorporating the user modules in SHaxi

To incorporate an individual user module into SHaxi, it must be added to the program

that specifies the models. This program is fd2_model.f90. In the above example the

subroutines were added in a module named circle. So, a USE circle statement must be

added to fd2_model.f90 as shown here:

Next we need to add a call to the driver subroutine and define a model number (SHaxi

variable model_type) to the module. This can be done inside fd2_model.f90 as shown:

IF (model_type==1) THEN ! Homogeneous Model

--- several lines of code ---

ELSEIF (model_type == 48) THEN ! circular anomaly

 IF (attenuate == 1) THEN ! initialize Quality factors
 CALL Qprem(Q1,1)
 CALL Qprem(Q2,2)
 ENDIF
 CALL circledriver(rho,mu1,mu2)

ELSEIF (model_type == 49) THEN ! yet another model

--- more code ----

ENDIF

!===!
! FD_MODEL
!===!
subroutine fd_model
 USE global
 USE mod_cart2D, only: mpi_rank,mpi_xrank
 USE attenuation
 USE ncoutput
 USE circle
 implicit none

----- the rest of the code ----

SHaxi – user defined models

8

III. The Makefile

In addition, the user module should be added to the makefile. Here two things must be

done. First, it needs to be added to the OBJECTS variable:

OBJECTS= mod_sacoutput.o mod_global.o mod_circle.o mod_cart2D.o …

Second, we add the lines to compile the module file itself:

mod_circle.o : mod_circle.f90 mod_global.f90

 $(F90) $(OPTIONS) -c mod_circle.f90

In this case, we add the mod_global.f90 dependency since we used several of the global

variables in our module.

V. Model visualization

How do we know our subroutine’s actually produced the model we expected in SHaxi?

For the purpose of checking models we supply a subroutine for writing out the models in

netCDF format. A model file is written for each process rank. These files have a naming

convention *_model.nc.

Each netCDF file contains the parameters, rho, Vs1, Vs2, and Q. Where Vs1 and Vs2 are

the shear wave velocities calculated from the shear moduli and density. The quickest

way to check the model file is to use a freeware program such as ncview

(http://meteora.ucsd.edu/~pierce/ncview_home_page.html). A Ncview prompter used

with a SHaxi model file is shown below. Each of the above variables can be selected in

the Ncview prompter and one can quickly check if the model looks correct (although

Ncview only displays the files in a Cartesian grid).

SHaxi – user defined models

9

Figure 3. The Ncview prompter.

Figure 4. Ncview image of Vs1.

SHaxi – user defined models

10

A good advantage to using Ncview is that clicking inside the model space produces a

profile. So, for example clicking in a few different places in the image displayed in

Figure 4 produces an S-wave velocity profile that can be inspected, zoomed into, printed,

etc.:

